Skip to main content

Advertisement

Log in

Functional disruptions of the brain network in low back pain: a graph-theoretical study

  • Advanced Neuroimaging
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate alterations in the topological organization of whole-brain functional networks in patients with chronic low back pain (CLBP) and characterize the relationship of these alterations with pain characteristics.

Methods

Thirty-three CLBP patients and 34 matched healthy controls (HCs) underwent fMRI scans. A graph-theoretical approach was applied to identify brain network changes in patients suffering from chronic low back pain given its nonspecific etiology and complexity. Graph theory-based analysis was used to construct functional connectivity matrices and extract the features of small-world networks of the brain in both groups. Then, the whole-brain functional connectivity differences were characterized by network-based statistics (NBS) analysis, and the relationship between the altered brain features and clinical measures was explored.

Results

At the global level, patients with CLBP showed significantly decreased gamma, sigma, global efficiency, and local efficiency and increased lambda and shortest path length compared with HCs. At the regional level, there were deficits in nodal efficiency within the default mode network and salience network. NBS analysis demonstrated that decreased functional connectivity was present in the CLBP patients, mainly in the frontolimbic circuit and temporal regions. Furthermore, aspects of topological dysfunctions in CLBP were correlated with pain severity.

Conclusion

This study highlighted the aberrant topological organization of functional brain networks in CLBP, which may shed light on the pathophysiology of CLBP and support the development of pain management approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buchbinder R, Hartvigsen J, Cherkin D, Foster NE, Maher CG, Underwood M et al (2018) What low back pain is and why we need to pay attention. Lancet 391:2356–2367. https://doi.org/10.1016/S0140-6736(18)30480-X

    Article  Google Scholar 

  2. Deyo RA, Von Korff M, Duhrkoop D (2015) Opioids for low back pain. BMJ 350:g6380. https://doi.org/10.1136/bmj.g6380

    Article  PubMed  PubMed Central  Google Scholar 

  3. Davis KD, Moayedi M (2013) Central mechanisms of pain revealed through functional and structural MRI. J Neuroimmune Pharmacol 8:518–534. https://doi.org/10.1007/s11481-012-9386-8

    Article  PubMed  Google Scholar 

  4. Farmer MA, Baliki MN, Apkarian AV (2012) A dynamic network perspective of chronic pain. Neurosci Lett 520:197–203. https://doi.org/10.1016/j.neulet.2012.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kucyi A, Davis KD (2015) The dynamic pain connectome. Trends Neurosci 38:86–95. https://doi.org/10.1016/j.tins.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  6. Hohenfeld C, Werner CJ, Reetz K (2018) Resting-state connectivity in neurodegenerative disorders: is there potential for an imaging biomarker? NeuroImage: Clin 18:849–870. https://doi.org/10.1016/j.nicl.2018.03.013

    Article  PubMed  Google Scholar 

  7. Letzen JE, Boissoneault J, Sevel LS, Robinson ME (2020) Altered mesocorticolimbic functional connectivity in chronic low back pain patients at rest and following sad mood induction. Brain Imaging Behav 14:1118–1129. https://doi.org/10.1007/s11682-019-00076-w

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tu Y, Jung M, Gollub RL, Napadow V, Gerber J, Ortiz A et al (2019) Abnormal medial prefrontal cortex functional connectivity and its association with clinical symptoms in chronic low back pain. Pain 160:1308–1318. https://doi.org/10.1097/j.pain.0000000000001507

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yu S, Li W, Shen W, Edwards RR, Gollub RL, Wilson G et al (2020) Impaired mesocorticolimbic connectivity underlies increased pain sensitivity in chronic low back pain. NeuroImage 218:116969. https://doi.org/10.1016/j.neuroimage.2020.116969

    Article  PubMed  Google Scholar 

  10. Li H, Song Q, Zhang R, Zhou Y, Kong Y (2021) Enhanced temporal coupling between thalamus and dorsolateral prefrontal cortex mediates chronic low back pain and depression. Neural Plast 2021:7498714. https://doi.org/10.1155/2021/7498714

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198. https://doi.org/10.1038/nrn2575

    Article  CAS  PubMed  Google Scholar 

  12. Van Den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  13. Hashmi JA, Kong J, Spaeth R, Gollub RL, Khan S, Kaptchuk TJ (2014) Functional network architecture predicts psychologically mediated analgesia related to treatment in chronic knee pain patients. J Neurosci 34:3924–3936. https://doi.org/10.1523/JNEUROSCI.3155-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaplan CM, Schrepf A, Ichesco E, Kochlefl L, Harte SE, Clauw DJ et al (2019) Functional and neurochemical disruptions of brain hub topology in chronic pain. Pain 160:973–983. https://doi.org/10.1097/j.pain.0000000000001480

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang F, Li F, Jia Z, Gong Q, Yang H, Jin Y et al (2022) Altered brain topological property associated with anxiety in experimental orthodontic pain. Front Neurosci 16:907216. https://doi.org/10.3389/fnins.2022.907216

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Pauw R, Meeus M, Coppieters I, Caeyenberghs K, Cagnie B, Aerts H et al (2020) Hub disruption in patients with chronic neck pain: a graph analytical approach. Pain 161:729–741. https://doi.org/10.1097/j.pain.0000000000001762

    Article  PubMed  Google Scholar 

  17. Lamichhane B, Jayasekera D, Jakes R, Glasser MF, Zhang J, Yang C et al (2021) Multi-modal biomarkers of low back pain: a machine learning approach. NeuroImage: Clinical 29:102530. https://doi.org/10.1016/j.nicl.2020.102530

    Article  PubMed  Google Scholar 

  18. Yuan J, Purepong N, Kerr DP, McDonough S, Park J, Bradbury I (2008) Effectiveness of acupuncture for low back pain: a systematic review. Spine 33:E887–E900. https://doi.org/10.1097/BRS.0b013e318186b276

    Article  PubMed  Google Scholar 

  19. Jinhui W, Xindi W, Mingrui X, Xuhong L, Alan E, Yong H (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:00386. https://doi.org/10.3389/fnhum.2015.00386

    Article  Google Scholar 

  20. Tzourio-Mazoyer N, Papathanassiou D, Crivello F, Etard O, Delcroix N, Joliot M et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289. https://doi.org/10.1006/nimg.2001.0978

    Article  CAS  PubMed  Google Scholar 

  21. Danon L, Diaz-Guilera A, Arenas A (2006) The effect of size heterogeneity on community identification in complex networks. J Stat Mech Theory Exp:P11010. https://doi.org/10.1088/1742-5468/2006/11/P11010

  22. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440. https://doi.org/10.1038/30918

    Article  CAS  PubMed  Google Scholar 

  23. Buckner RL, Sepulcre J, Krienen FM, Hedden T, Andrews-Hanna JR, Talukdar T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci 29:1860–1873. https://doi.org/10.1523/JNEUROSCI.5062-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang X, Zou Q, He Y, Yang Y (2013) Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci U S A 110:1929–1934. https://doi.org/10.1073/pnas.1214900110

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liao X-H, Xia M-R, Xu T, Dai Z-J, Cao X-Y, Niu H-J et al (2013) Functional brain hubs and their test–retest reliability: a multiband resting-state functional MRI study. NeuroImage 83:969–982. https://doi.org/10.1016/j.neuroimage.2013.07.058

    Article  PubMed  Google Scholar 

  26. Liao X, Cao M, Xia M, He Y (2017) Individual differences and time-varying features of modular brain architecture. NeuroImage 152:94–107. https://doi.org/10.1016/j.neuroimage.2017.02.066

    Article  PubMed  Google Scholar 

  27. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:0174–0183. https://doi.org/10.1371/journal.pcbi.0030017

    Article  CAS  Google Scholar 

  28. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52:1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  29. Mingrui X, Jinhui W, Yong H (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PloS One 8:e68910. https://doi.org/10.1371/journal.pone.0068910

    Article  CAS  Google Scholar 

  30. Keown CL, Datko MC, Chen CP, Maximo JO, Jahedi A, Müller RA (2017) Network organization is globally atypical in autism: a graph theory study of intrinsic functional connectivity. Biol Psychiatry Cogn Neurosci Neuroimaging 2:66–75. https://doi.org/10.1016/j.bpsc.2016.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y et al (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70:334–342. https://doi.org/10.1016/j.biopsych.2011.05.018

    Article  PubMed  Google Scholar 

  32. Zalesky A, Fornito A, Bullmore ET (2010) Network-based statistic: identifying differences in brain networks. NeuroImage 53:1197–1207. https://doi.org/10.1016/j.neuroimage.2010.06.041

    Article  PubMed  Google Scholar 

  33. Finn ES, Shen X, Holahan JM, Scheinost D, Lacadie C, Papademetris X et al (2014) Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity. Biol Psychiatry 76:397–404. https://doi.org/10.1016/j.biopsych.2013.08.031

    Article  PubMed  Google Scholar 

  34. Tanya W, Shulan H (2016) Network-based analysis reveals functional connectivity related to internet addiction tendency. Front Hum Neurosci 10:6. https://doi.org/10.3389/fnhum.2016.00006

    Article  Google Scholar 

  35. Fan X, Wu Y, Cai L, Ma J, Pan N, Xu X et al (2021) The differences in the whole-brain functional network between cantonese-mandarin bilinguals and mandarin monolinguals. Brain Sci 11:1–18. https://doi.org/10.3390/brainsci11030310

    Article  Google Scholar 

  36. Joel D, Berman Z, Tavor I, Wexler N, Gaber O, Stein Y et al (2015) Sex beyond the genitalia : the human brain mosaic. Proc Natl Acad Sci U S A 112:15468–15473. https://doi.org/10.1073/pnas.1509654112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hou Y, Feng F, Zhang L, Ou R, Lin J, Gong Q et al (2022) Disrupted topological organization of resting-state functional brain networks in Parkinson’s disease patients with glucocerebrosidase gene mutations. Neuroradiology: A Journal Dedicated to Neuroimaging and Interventional. Neuroradiology 65:361–370. https://doi.org/10.1007/s00234-022-03067-9

    Article  PubMed  Google Scholar 

  38. Jin M, Wang L, Wang H, Han X, Diao Z, Guo W et al (2021) Altered resting-state functional networks in patients with hemodialysis: a graph-theoretical based study. Brain Imaging Behav 15:833–845. https://doi.org/10.1007/s11682-020-00293-8

    Article  PubMed  Google Scholar 

  39. Li X, Yang C, Xie P, Han Y, Su R, Li Z et al (2021) The diagnosis of amnestic mild cognitive impairment by combining the characteristics of brain functional network and support vector machine classifier. J Neurosci Methods 363:109334. https://doi.org/10.1016/j.jneumeth.2021.109334

    Article  PubMed  Google Scholar 

  40. Wang W, Mei M, Gao Y, Huang B, Qiu Y, Zhang Y et al (2020) Changes of brain structural network connection in Parkinson’s disease patients with mild cognitive dysfunction: a study based on diffusion tensor imaging. J Neurol 267:933–943. https://doi.org/10.1007/s00415-019-09645-x

    Article  PubMed  Google Scholar 

  41. Liu J, Zhang F, Liu X, Zhuo Z, Wei J, Du M et al (2018) Altered small-world, functional brain networks in patients with lower back pain. Sci China Life Sci 61:1420–1424. https://doi.org/10.1007/s11427-017-9108-6

    Article  PubMed  Google Scholar 

  42. Baliki MN, Mansour AR, Baria AT, Apkarian AV (2014) Functional reorganization of the default mode network across chronic pain conditions. PloS One 9:1–13. https://doi.org/10.1371/journal.pone.0106133

    Article  CAS  Google Scholar 

  43. Li J, Zhang J-H, Yi T, Tang W-J, Wang S-W, Dong J-C (2014) Acupuncture treatment of chronic low back pain reverses an abnormal brain default mode network in correlation with clinical pain relief. Acupunct Med 32:102–108. https://doi.org/10.1136/acupmed-2013-010423

    Article  CAS  PubMed  Google Scholar 

  44. Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28:1398–1403. https://doi.org/10.1523/JNEUROSCI.4123-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu R, Gollub RL, Spaeth R, Napadow V, Wasan A, Kong J (2014) Disrupted functional connectivity of the periaqueductal gray in chronic low back pain. NeuroImage: Clinical 6:100–108. https://doi.org/10.1016/j.nicl.2014.08.019

    Article  PubMed  Google Scholar 

  46. Baliki MN, Baria AT, Vania Apkarian A (2011) The cortical rhythms of chronic back pain. J Neurosci 31:13981–13990. https://doi.org/10.1523/JNEUROSCI.1984-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Apkarian AV et al (2012) Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci 15:1117–1119. https://doi.org/10.1038/nn.3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang B, Jung M, Tu Y, Gollub R, Lang C, Ortiz A et al (2019) Identifying brain regions associated with the neuropathology of chronic low back pain: a resting-state amplitude of low-frequency fluctuation study. Br J Anaesth 123:e303–e311. https://doi.org/10.1016/j.bja.2019.02.021

    Article  PubMed  PubMed Central  Google Scholar 

  49. Baumbach P, Meißner W, Reichenbach JR, Gussew A (2022) Functional connectivity and neurotransmitter impairments of the salience brain network in chronic low back pain patients: a combined resting-state functional magnetic resonance imaging and 1H-MRS study. Pain 163:2337–2347. https://doi.org/10.1097/j.pain.0000000000002626

    Article  PubMed  Google Scholar 

  50. Kolesar TA, Bilevicius E, Kornelsen J (2017) Salience, central executive, and sensorimotor network functional connectivity alterations in failed back surgery syndrome. Scand J Pain 16:10–14. https://doi.org/10.1016/j.sjpain.2017.01.008

    Article  PubMed  Google Scholar 

  51. Kobayashi Y, Sekiguchi M, Konno SI, Kurata J, Kokubun M, Akaishizawa T et al (2009) Augmented cerebral activation by lumbar mechanical stimulus in chronic low back pain patients: An fMRI study. Spine 34:2431–2436. https://doi.org/10.1097/BRS.0b013e3181b1fb76

    Article  PubMed  Google Scholar 

  52. Pablo B, Ariel C, Daniel F, Ignacio C, Carolina S, Pedro M et al (2010) Modular organization of brain resting state networks in chronic back pain patients. Front Neuroinform 4:00116. https://doi.org/10.3389/fninf.2010.00116

    Article  Google Scholar 

  53. Masoumbeigi M, Alam NR, Kordi R, Rostami M, Afzali M, Yadollahi M et al (2022) rTMS pain reduction effectiveness in non-specific chronic low back pain patients using rs-fMRI functional connectivity. J Med Biol Eng 42:647–657. https://doi.org/10.1007/s40846-022-00721-8

    Article  Google Scholar 

  54. Keltner JR, Furst A, Fan C, Redfern R, Inglis B, Fields HL (2006) Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study. J Neurosci 26:4437–4443. https://doi.org/10.1523/JNEUROSCI.4463-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grahn JA, Parkinson JA, Owen AM (2008) The cognitive functions of the caudate nucleus. Prog Neurobiol 86:141–155. https://doi.org/10.1016/j.pneurobio.2008.09.004

    Article  PubMed  Google Scholar 

  56. Absinta M, Rocca MA, Colombo B, Falini A, Comi G, Filippi M (2012) Selective decreased grey matter volume of the pain-matrix network in cluster headache. Cephalalgia 32:109–115. https://doi.org/10.1177/0333102411431334

    Article  PubMed  Google Scholar 

  57. Cui Ping M, Zhi Lan B, Xiao Na Z, Qiu Juan Z, Lei Z (2016) Abnormal subcortical brain morphology in patients with knee osteoarthritis: a cross-sectional study. Front Aging Neurosci 8:00003. https://doi.org/10.3389/fnagi.2016.00003

    Article  Google Scholar 

  58. Wartolowska K, Hough MG, Jenkinson M, Andersson J, Tracey I, Wordsworth BP (2012) Structural changes of the brain in rheumatoid arthritis. Arthritis Rheum 64:371–379. https://doi.org/10.1002/art.33326

    Article  PubMed  Google Scholar 

  59. Koechlin H, Kossowsky J, Coakley R, Schechter N, Werner C (2018) The role of emotion regulation in chronic pain: a systematic literature review. J Psychosom Res 107:38–45. https://doi.org/10.1016/j.jpsychores.2018.02.002

    Article  PubMed  Google Scholar 

  60. Sven V, Jae-Jin S, Dirk De R (2018) Thalamocortical dysrhythmia detected by machine learning. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-02820-0

    Article  CAS  Google Scholar 

  61. Li H, Li X, Feng Y, Gao F, Kong Y, Hu L (2020) Deficits in ascending and descending pain modulation pathways in patients with postherpetic neuralgia. NeuroImage 221:117186. https://doi.org/10.1016/j.neuroimage.2020.117186

    Article  PubMed  Google Scholar 

  62. Bräscher AK, Becker S, Hoeppli ME, Schweinhardt P (2016) Different brain circuitries mediating controllable and uncontrollable pain. J Neurosci 36:5013–5025. https://doi.org/10.1523/JNEUROSCI.1954-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mao CP, Wilson G, Cao J, Meshberg N, Huang Y, Kong J (2022) Abnormal anatomical and functional connectivity of the thalamo-sensorimotor circuit in chronic low back pain: resting-state functional magnetic resonance imaging and diffusion tensor imaging study. Neuroscience 487:143–154. https://doi.org/10.1016/j.neuroscience.2022.02.001

    Article  CAS  PubMed  Google Scholar 

  64. Seifert F, Maihöfner C (2007) Representation of cold allodynia in the human brain—a functional MRI study. NeuroImage 35:1168–1180. https://doi.org/10.1016/j.neuroimage.2007.01.021

    Article  PubMed  Google Scholar 

  65. Apkarian VA, Baliki MN, Geha PY (2009) Towards a theory of chronic pain. Prog Neurobiol 87:81–97. https://doi.org/10.1016/j.pneurobio.2008.09.018

    Article  PubMed  Google Scholar 

  66. Baker KS, Georgiou-Karistianis N, Gibson SJ, Giummarra MJ (2017) Optimizing cognitive function in persons with chronic pain. Clin J Pain 33:462–472. https://doi.org/10.1097/AJP.0000000000000423

    Article  PubMed  Google Scholar 

  67. Neugebauer V, Galhardo V, Maione S, Mackey SC (2009) Forebrain pain mechanisms. Brain Res Rev 60:226–242. https://doi.org/10.1016/j.brainresrev.2008.12.014

    Article  PubMed  Google Scholar 

  68. Freeman S, Yu R, Egorova N, Chen X, Kirsch I, Claggett B et al (2015) Distinct neural representations of placebo and nocebo effects. NeuroImage 112:197–207. https://doi.org/10.1016/j.neuroimage.2015.03.015

    Article  PubMed  Google Scholar 

  69. Vachon-Presseau E, Tétreault P, Petre B, Huang L, Berger SE, Baria AT et al (2016) Corticolimbic anatomical characteristics predetermine risk for chronic pain. Brain 139:1958–1970. https://doi.org/10.1093/brain/aww100

    Article  PubMed  PubMed Central  Google Scholar 

  70. Koechlin H, Coakley R, Schechter N, Werner C, Kossowsky J (2018) The role of emotion regulation in chronic pain: a systematic literature review. J Psychosom Res 107:38–45. https://doi.org/10.1016/j.jpsychores.2018.02.002

    Article  PubMed  Google Scholar 

  71. Chudler Eric H, Upadhyay J, Borsook D, Becerra L (2010) A key role of the basal ganglia in pain and analgesia - insights gained through human functional imaging. Mol Pain 6:27. https://doi.org/10.1186/1744-8069-6-27

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kim MJ, Hamilton JP, Gotlib IH (2008) Reduced caudate gray matter volume in women with major depressive disorder. Psychiatry Res: Neuroimaging 164:114–122. https://doi.org/10.1016/j.pscychresns.2007.12.020

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants for their participation in the study.

Funding

This work was supported by grants from Natural Science Foundation of Shaanxi Province (2022SF-347, 2021SF-147, 2018SF-135), National Natural Science Foundation of China (81501455), and China Scholarship Council (201806285075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiu Juan Zhang or Cui Ping Mao.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H.J., Wu, H.M., Li, X.H. et al. Functional disruptions of the brain network in low back pain: a graph-theoretical study. Neuroradiology 65, 1483–1495 (2023). https://doi.org/10.1007/s00234-023-03209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-023-03209-7

Keywords

Navigation