Skip to main content

Advertisement

Log in

Radiomics in peritumoral non-enhancing regions: fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The peritumoral non-enhancing region (NER) is frequently not removed during the surgical resection of glioblastoma, with most recurrences occurring within the original treatment field. This study determined whether radiomics analysis of the NER can predict local recurrence and overall survival in patients with glioblastoma.

Methods

Preoperative magnetic resonance imaging (MRI) scans from 83 consecutive patients with glioblastoma were retrospectively reviewed and grouped into training (n = 59) and test sets (n = 24). A total of 6472 radiomic features were extracted from contrast-enhanced T1-weighted and fluid-attenuated inversion recovery images and from fractional anisotropy (FA) and normalized cerebral blood volume (CBV) maps. A diagnostic model to predict 6-month progression was tested using the area under the receiver operating characteristics curve (AUC) and compared with the single parameters of FA and CBV. A survival model was tested using Harrell’s C-index and compared with clinical models that included age, sex, Karnofsky performance score, and extent of surgical resection.

Results

Four FA features and six CBV features were selected for the diagnostic model; no features were extracted from conventional MRI. Combined FA and CBV radiomics showed better predictive value for local progression (AUC, 0.79; 95% CI, 0.67–0.90) than single imaging radiomics (AUC, 0.70–0.76) or single imaging parameters (AUC, 0.51–0.54). The combined model (C-index, 0.87) improved prognostication when added to clinical models (C-index, 0.72).

Conclusion

Radiomics features using FA and CBV in the NER have the potential to improve prediction of local progression and overall survival in patients with glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oh J, Henry RG, Pirzkall A, Lu Y, Li X, Catalaa I, Chang S, Dillon WP, Nelson SJ (2004) Survival analysis in patients with glioblastoma multiforme: predictive value of choline-to-N-acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volume. J Magn Reson Imaging : JMRI 19(5):546–554. https://doi.org/10.1002/jmri.20039

    Article  PubMed  Google Scholar 

  2. Parsa AT, Wachhorst S, Lamborn KR, Prados MD, McDermott MW, Berger MS, Chang SM (2005) Prognostic significance of intracranial dissemination of glioblastoma multiforme in adults. J Neurosurg 102(4):622–628

    Article  PubMed  Google Scholar 

  3. Stecco A, Pisani C, Quarta R, Brambilla M, Masini L, Beldì D, Zizzari S, Fossaceca R, Krengli M, Carriero A (2011) DTI and PWI analysis of peri-enhancing tumoral brain tissue in patients treated for glioblastoma. J Neuro-Oncol 102(2):261–271

    Article  Google Scholar 

  4. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://doi.org/10.1038/ncomms5006

    Article  CAS  PubMed  Google Scholar 

  5. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30(9):1234–1248. https://doi.org/10.1016/j.mri.2012.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jain R, Poisson LM, Gutman D, Scarpace L, Hwang SN, Holder CA, Wintermark M, Rao A, Colen RR, Kirby J, Freymann J, Jaffe CC, Mikkelsen T, Flanders A (2014) Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272(2):484–493. https://doi.org/10.1148/radiol.14131691

    Article  PubMed  Google Scholar 

  7. Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27(4):859–867

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohsen L, Shi V, Jena R, Gillard J, Price S (2013) Diffusion tensor invasive phenotypes can predict progression-free survival in glioblastomas. Br J Neurosurg 27(4):436–441

    Article  CAS  PubMed  Google Scholar 

  9. Bette S, Huber T, Gempt J, Boeckh-Behrens T, Wiestler B, Kehl V, Ringel F, Meyer B, Zimmer C, Kirschke JS (2017) Local fractional anisotropy is reduced in areas with tumor recurrence in glioblastoma. Radiology 283(2):499–507. https://doi.org/10.1148/radiol.2016152832

    Article  PubMed  Google Scholar 

  10. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: Images Are More than Pictures, They Are Data. 278(2):563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  11. Zhou H, Vallieres M, Bai HX, Su C, Tang H, Oldridge D, Zhang Z, Xiao B, Liao W, Tao Y, Zhou J, Zhang P, Yang L (2017) MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro-oncology. 19:862–870. https://doi.org/10.1093/neuonc/now256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kickingereder P, Burth S, Wick A, Gotz M, Eidel O, Schlemmer HP, Maier-Hein KH, Wick W, Bendszus M, Radbruch A, Bonekamp D (2016) Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280(3):880–889. https://doi.org/10.1148/radiol.2016160845

    Article  PubMed  Google Scholar 

  13. Lee J, Jain R, Khalil K, Griffith B, Bosca R, Rao G, Rao A (2016) Texture feature ratios from relative CBV maps of perfusion MRI are associated with patient survival in glioblastoma. AJNR Am J Neuroradiol 37(1):37–43. https://doi.org/10.3174/ajnr.A4534

    Article  PubMed  Google Scholar 

  14. Kickingereder P, Neuberger U, Bonekamp D, Piechotta PL, Gotz M, Wick A, Sill M, Kratz A, Shinohara RT, Jones DTW, Radbruch A, Muschelli J, Unterberg A, Debus J, Schlemmer HP, Herold-Mende C, Pfister S, von Deimling A, Wick W, Capper D, Maier-Hein KH, Bendszus M (2018) Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro-oncology 20(6):848–857. https://doi.org/10.1093/neuonc/nox188

    Article  CAS  PubMed  Google Scholar 

  15. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  16. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  17. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972. https://doi.org/10.1200/jco.2009.26.3541

    Article  PubMed  Google Scholar 

  18. Nolden M, Zelzer S, Seitel A, Wald D, Muller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I (2013) The Medical Imaging Interaction Toolkit: challenges and advances: 10 years of open-source development. Int J Comput Assist Radiol Surg 8(4):607–620. https://doi.org/10.1007/s11548-013-0840-8

    Article  PubMed  Google Scholar 

  19. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54(3):2033–2044. https://doi.org/10.1016/j.neuroimage.2010.09.025

    Article  PubMed  Google Scholar 

  20. Shinohara RT, Sweeney EM, Goldsmith J, Shiee N, Mateen FJ, Calabresi PA, Jarso S, Pham DL, Reich DS, Crainiceanu CM, Australian Imaging Biomarkers Lifestyle Flagship Study of A, Alzheimer’s Disease Neuroimaging I (2014) Statistical normalization techniques for magnetic resonance imaging. NeuroImage Clin 6:9–19. https://doi.org/10.1016/j.nicl.2014.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  21. Weisskoff R, Boxerman J, Sorensen A, Kulke S, Campbell T, Rosen B (1994) Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. In: Proceedings of the Society of Magnetic Resonance, Second Annual Meeting, San Francisco, Calif. Berkeley, 1994. p p. 279

  22. Collewet G, Strzelecki M, Mariette F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging 22(1):81–91. https://doi.org/10.1016/j.mri.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  23. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol 58(1):267–288

    Google Scholar 

  24. Wu TT, Chen YF, Hastie T, Sobel E, Lange K (2009) Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics (Oxford, England) 25(6):714–721. https://doi.org/10.1093/bioinformatics/btp041

    Article  CAS  Google Scholar 

  25. Hepp T, Schmid M, Gefeller O, Waldmann E, Mayr A (2016) Approaches to regularized regression - a comparison between gradient boosting and the lasso. Methods Inf Med 55(5):422–430. https://doi.org/10.3414/me16-01-0033

    Article  PubMed  Google Scholar 

  26. Gui J, Li H (2005) Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics (Oxford, England) 21(13):3001–3008. https://doi.org/10.1093/bioinformatics/bti422

    Article  CAS  Google Scholar 

  27. Ingrisch M, Schneider MJ, Norenberg D, Negrao de Figueiredo G, Maier-Hein K, Suchorska B, Schuller U, Albert N, Bruckmann H, Reiser M, Tonn JC, Ertl-Wagner B (2017) Radiomic analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Investig Radiol 52(6):360–366. https://doi.org/10.1097/RLI.0000000000000349

    Article  Google Scholar 

  28. Marko NF, Weil RJ, Schroeder JL, Lang FF, Suki D, Sawaya RE (2014) Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J Clin Oncol 32(8):774–782. https://doi.org/10.1200/jco.2013.51.8886

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chamberlain MC (2011) Radiographic patterns of relapse in glioblastoma. J Neuro-Oncol 101(2):319–323. https://doi.org/10.1007/s11060-010-0251-4

    Article  Google Scholar 

  30. Gebhardt BJ, Dobelbower MC, Ennis WH, Bag AK, Markert JM, Fiveash JB (2014) Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomide. Radiat Oncol (London, England) 9:130. https://doi.org/10.1186/1748-717x-9-130

    Article  Google Scholar 

  31. McDonald MW, Shu HK, Curran WJ Jr, Crocker IR (2011) Pattern of failure after limited margin radiotherapy and temozolomide for glioblastoma. Int J Radiat Oncol Biol Phys 79(1):130–136. https://doi.org/10.1016/j.ijrobp.2009.10.048

    Article  CAS  PubMed  Google Scholar 

  32. Verma V, Simone CB 2nd, Krishnan S, Lin SH, Yang J, Hahn SM (2017) The rise of radiomics and implications for oncologic management. J Natl Cancer Inst 109(7). https://doi.org/10.1093/jnci/djx055

  33. Rios Velazquez E, Aerts HJ, Gu Y, Goldgof DB, De Ruysscher D, Dekker A, Korn R, Gillies RJ, Lambin P (2012) A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists' delineations and with the surgical specimen. Radiother Oncol 105(2):167–173. https://doi.org/10.1016/j.radonc.2012.09.023

    Article  PubMed  Google Scholar 

  34. van Dam IE, van Sornsen de Koste JR, Hanna GG, Muirhead R, Slotman BJ, Senan S (2010) Improving target delineation on 4-dimensional CT scans in stage I NSCLC using a deformable registration tool. Radiother Oncol 96(1):67–72. https://doi.org/10.1016/j.radonc.2010.05.003

    Article  PubMed  Google Scholar 

  35. Park JE, Kim HS, Goh MJ, Kim SJ, Kim JH (2015) Pseudoprogression in patients with glioblastoma: assessment by using volume-weighted voxel-based multiparametric clustering of MR imaging data in an independent test set. Radiology 275(3):792–802. https://doi.org/10.1148/radiol.14141414

    Article  PubMed  Google Scholar 

  36. Verma R, Zacharaki EI, Ou Y, Cai H, Chawla S, Lee SK, Melhem ER, Wolf R, Davatzikos C (2008) Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad Radiol 15(8):966–977. https://doi.org/10.1016/j.acra.2008.01.029

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim JY, Park JE, Jo Y, Shim WH, Nam SJ, Kim JH, Yoo R-E, Choi SH, Kim HS (2018) Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro-Oncology 21:noy133-noy133. https://doi.org/10.1093/neuonc/noy133

    Article  CAS  Google Scholar 

  38. Materka A, Strzelecki M Texture analysis methods–a review

  39. Kickingereder P, Gotz M, Muschelli J, Wick A, Neuberger U, Shinohara RT, Sill M, Nowosielski M, Schlemmer HP, Radbruch A, Wick W, Bendszus M, Maier-Hein KH, Bonekamp D (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 22(23):5765–5771. https://doi.org/10.1158/1078-0432.CCR-16-0702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, Johnson G (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25(5):746–755

    PubMed  PubMed Central  Google Scholar 

  41. Sadeghi N, D'Haene N, Decaestecker C, Levivier M, Metens T, Maris C, Wikler D, Baleriaux D, Salmon I, Goldman S (2008) Apparent diffusion coefficient and cerebral blood volume in brain gliomas: relation to tumor cell density and tumor microvessel density based on stereotactic biopsies. AJNR Am J Neuroradiol 29(3):476–482. https://doi.org/10.3174/ajnr.A0851

    Article  PubMed  Google Scholar 

  42. Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48(2):347–356

    CAS  PubMed  Google Scholar 

  43. Hirai T, Murakami R, Nakamura H, Kitajima M, Fukuoka H, Sasao A, Akter M, Hayashida Y, Toya R, Oya N, Awai K, Iyama K, Kuratsu JI, Yamashita Y (2008) Prognostic value of perfusion MR imaging of high-grade astrocytomas: long-term follow-up study. AJNR Am J Neuroradiol 29(8):1505–1510. https://doi.org/10.3174/ajnr.A1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jain R, Poisson L, Narang J, Gutman D, Scarpace L, Hwang SN, Holder C, Wintermark M, Colen RR, Kirby J, Freymann J, Brat DJ, Jaffe C, Mikkelsen T (2013) Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. Radiology 267(1):212–220. https://doi.org/10.1148/radiol.12120846

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kickingereder P, Wiestler B, Burth S, Wick A, Nowosielski M, Heiland S, Schlemmer HP, Wick W, Bendszus M, Radbruch A (2015) Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro-oncology. 17:1139–1147. https://doi.org/10.1093/neuonc/nov028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ballman KV, Buckner JC, Brown PD, Giannini C, Flynn PJ, LaPlant BR, Jaeckle KA (2007) The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro-oncology 9(1):29–38. https://doi.org/10.1215/15228517-2006-025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Darefsky AS, King JT Jr, Dubrow R (2012) Adult glioblastoma multiforme survival in the temozolomide era: a population-based analysis of Surveillance, Epidemiology, and End Results registries. Cancer 118(8):2163–2172. https://doi.org/10.1002/cncr.26494

    Article  PubMed  Google Scholar 

  48. Johnson DR, O’Neill BPJJoN-O (2012) Glioblastoma survival in the United States before and during the temozolomide era. 107 (2):359–364. doi:https://doi.org/10.1007/s11060-011-0749-4

    Article  PubMed  Google Scholar 

  49. O'Connor JPB, Aboagye EO, Adams JE, Aerts HJWL, Barrington SF, Beer AJ, Boellaard R, Bohndiek SE, Brady M, Brown G, Buckley DL, Chenevert TL, Clarke LP, Collette S, Cook GJ, Desouza NM, Dickson JC, Dive C, Evelhoch JL, Faivre-Finn C, Gallagher FA, Gilbert FJ, Gillies RJ, Goh V, Griffiths JR, Groves AM, Halligan S, Harris AL, Hawkes DJ, Hoekstra OS, Huang EP, Hutton BF, Jackson EF, Jayson GC, Jones A, Koh DM, Lacombe D, Lambin P, Lassau N, Leach MO, Lee TY, Leen EL, Lewis JS, Liu Y, Lythgoe MF, Manoharan P, Maxwell RJ, Miles KA, Morgan B, Morris S, Ng T, Padhani AR, Parker GJM, Partridge M, Pathak AP, Peet AC, Punwani S, Reynolds AR, Robinson SP, Shankar LK, Sharma RA, Soloviev D, Stroobants S, Sullivan DC, Taylor SA, Tofts PS, Tozer GM, van Herk M, Walker-Samuel S, Wason J, Williams KJ, Workman P, Yankeelov TE, Brindle KM, McShane LM, Jackson A, Waterton JC (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14(3):169–186. https://doi.org/10.1038/nrclinonc.2016.162

    Article  CAS  PubMed  Google Scholar 

  50. Levine D, Bankier AA, Halpern EF (2009) Submissions to radiology: our top 10 list of statistical errors. Radiology 253(2):288–290. https://doi.org/10.1148/radiol.2532090759

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (Grant no. NRF-2017R1C1B2007258) and the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea (1720030). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Eun Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Reference no. 2018-0003) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Informed consent

The requirement for informed patient consent was waived for this retrospective study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.Y., Yoon, M.J., Park, J.E. et al. Radiomics in peritumoral non-enhancing regions: fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma. Neuroradiology 61, 1261–1272 (2019). https://doi.org/10.1007/s00234-019-02255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-019-02255-4

Keywords

Navigation