Skip to main content

Advertisement

Log in

Volume perfusion CT imaging of cerebral vasospasm: diagnostic performance of different perfusion maps

  • Interventional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

In this study, we aimed to evaluate the diagnostic performance of different volume perfusion CT (VPCT) maps regarding the detection of cerebral vasospasm compared to angiographic findings.

Methods

Forty-one datasets of 26 patients (57.5 ± 10.8 years, 18 F) with subarachnoid hemorrhage and suspected cerebral vasospasm, who underwent VPCT and angiography within 6 h, were included. Two neuroradiologists independently evaluated the presence and severity of vasospasm on perfusion maps on a 3-point Likert scale (0—no vasospasm, 1—vasospasm affecting <50 %, 2—vasospasm affecting >50 % of vascular territory). A third neuroradiologist independently assessed angiography for the presence and severity of vasospasm on a 3-point Likert scale (0—no vasospasm, 1—vasospasm affecting < 50 %, 2—vasospasm affecting > 50 % of vessel diameter). Perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time to drain (TTD) were evaluated regarding diagnostic accuracy for cerebral vasospasm with angiography as reference standard. Correlation analysis of vasospasm severity on perfusion maps and angiographic images was performed. Furthermore, inter-reader agreement was assessed regarding findings on perfusion maps.

Results

Diagnostic accuracy for TTD and MTT was significantly higher than for all other perfusion maps (TTD, AUC = 0.832; MTT, AUC = 0.791; p < 0.001). TTD revealed higher sensitivity than MTT (p = 0.007). The severity of vasospasm on TTD maps showed significantly higher correlation levels with angiography than all other perfusion maps (p ≤ 0.048). Inter-reader agreement was (almost) perfect for all perfusion maps (kappa ≥ 0.927).

Conclusion

The results of this study indicate that TTD maps have the highest sensitivity for the detection of cerebral vasospasm and highest correlation with angiography regarding the severity of vasospasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACA:

Anterior cerebral artery

AUC:

Areas under the Curve

CBF:

Cerebral blood flow

CBV:

Cerebral blood volume

DCI:

Delayed cerebral ischemias

MCA:

Middle cerebral artery

MTT:

Mean transit time

NCT:

Non-contrast CT

PCA:

Posterior cerebral artery

ROC-:

Receiver-operator-characteristics-

TCD:

Transcranial doppler ultrasound

TTD:

Time to drain

VPCT:

Volume perfusion CT

References

  1. Kassell NF, Sasaki T, Colohan AR, Nazar G (1985) Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 16:562–572

    Article  CAS  PubMed  Google Scholar 

  2. Molyneux AJ, Kerr RS, Yu LM et al (2005) International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 366:809–817

    Article  PubMed  Google Scholar 

  3. Molyneux A, Kerr R, Stratton I et al (2002) International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 360:1267–1274

    Article  PubMed  Google Scholar 

  4. Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL (2007) Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke 38:2315–2321

    Article  PubMed  Google Scholar 

  5. Macdonald RL, Pluta RM, Zhang JH (2007) Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol 3:256–263

    Article  CAS  PubMed  Google Scholar 

  6. Al-Khindi T, Macdonald RL, Schweizer TA (2010) Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke 41:e519–e536

    Article  PubMed  Google Scholar 

  7. Heros RC, Zervas NT, Varsos V (1983) Cerebral vasospasm after subarachnoid hemorrhage: an update. Ann Neurol 14:599–608

    Article  CAS  PubMed  Google Scholar 

  8. Pickard JD, Murray GD, Illingworth R et al (1989) Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ 298:636–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biondi A, Ricciardi GK, Puybasset L et al (2004) Intra-arterial nimodipine for the treatment of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage: preliminary results. AJNR Am J Neuroradiol 25:1067–1076

    PubMed  Google Scholar 

  10. Lysakowski C, Walder B, Costanza MC, Tramèr MR (2001) Transcranial doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm a systematic review. Stroke 32:2292–2298

    Article  CAS  PubMed  Google Scholar 

  11. van der Schaaf I, Wermer MJ, van der Graaf Y, Hoff RG, Rinkel GJ, Velthuis BK (2006) CT after subarachnoid hemorrhage: relation of cerebral perfusion to delayed cerebral ischemia. Neurology 66:1533–1538

    Article  PubMed  Google Scholar 

  12. Cremers CH, van der Schaaf IC, Wensink E et al (2014) CT perfusion and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Cereb Blood Flow Metab 34:200–207

    Article  PubMed  Google Scholar 

  13. Mir DI, Gupta A, Dunning A et al (2014) CT perfusion for detection of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. AJNR Am J Neuroradiol 35:866–871

    Article  CAS  PubMed  Google Scholar 

  14. Pham M, Johnson A, Bartsch AJ et al (2007) CT perfusion predicts secondary cerebral infarction after aneurysmal subarachnoid hemorrhage. Neurology 69:762–765

    Article  CAS  PubMed  Google Scholar 

  15. Abels B, Klotz E, Tomandl BF, Kloska SP, Lell MM (2010) Perfusion CT in acute ischemic stroke: a qualitative and quantitative comparison of deconvolution and maximum slope approach. AJNR Am J Neuroradiol 31:1690–1698

    Article  CAS  PubMed  Google Scholar 

  16. Wintermark M, Ko NU, Smith WS, Liu S, Higashida RT, Dillon WP (2006) Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am J Neuroradiol 27:26–34

    CAS  PubMed  Google Scholar 

  17. Wintermark M, Dillon WP, Smith WS et al (2008) Visual grading system for vasospasm based on perfusion CT imaging: comparisons with conventional angiography and quantitative perfusion CT. Cerebrovasc Dis 26:163–170

    Article  PubMed  Google Scholar 

  18. Turowski B, Haenggi D, Wittsack J, Beck A, Moedder U (2007) Cerebral perfusion computerized tomography in vasospasm after subarachnoid hemorrhage: diagnostic value of MTT. Röfo 179:847–854

    CAS  PubMed  Google Scholar 

  19. Dankbaar JW, de Rooij NK, Rijsdijk M et al (2010) Diagnostic threshold values of cerebral perfusion measured with computed tomography for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Stroke 41:1927–1932

    Article  PubMed  Google Scholar 

  20. Lefournier V, Krainik A, Gory B et al (2010) Perfusion CT to quantify the cerebral vasospasm following subarachnoid hemorrhage. J Neuroradiol 37:284–291

    Article  PubMed  Google Scholar 

  21. Thierfelder KM, Sommer WH, Baumann AB et al (2013) Whole-brain CT perfusion: reliability and reproducibility of volumetric perfusion deficit assessment in patients with acute ischemic stroke. Neuroradiology 55:827–835

    Article  PubMed  Google Scholar 

  22. Abels B, Klotz E, Tomandl BF, Villablanca JP, Kloska SP, Lell MM (2011) CT perfusion in acute ischemic stroke: a comparison of 2-second and 1-second temporal resolution. AJNR Am J Neuroradiol 32:1632–1639

    Article  CAS  PubMed  Google Scholar 

  23. Vatter H, Guresir E, Berkefeld J et al (2011) Perfusion-diffusion mismatch in MRI to indicate endovascular treatment of cerebral vasospasm after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 82:876–883

    Article  PubMed  Google Scholar 

  24. Nolan CP, Macdonald RL (2006) Can angiographic vasospasm be used as a surrogate marker in evaluating therapeutic interventions for cerebral vasospasm? Neurosurg Focus 21:E1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Othman.

Ethics declarations

We declare that all human studies have been approved by the local ethics committee at the RWTH Aachen University and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Due the retrospective nature of this study, informed consent was waived.

Conflict of Interest

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A.E., Afat, S., Nikoubashman, O. et al. Volume perfusion CT imaging of cerebral vasospasm: diagnostic performance of different perfusion maps. Neuroradiology 58, 787–792 (2016). https://doi.org/10.1007/s00234-016-1695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-016-1695-9

Keywords

Navigation