Skip to main content
Log in

Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The purpose of the present study was to investigate normal ranges and test-retest reproducibility of phase-contrast MRI (PC-MRI)-measured flow and velocity parameters in intracranial arteries.

Methods

Highest flow (HF), lowest flow (LF), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured at two dates in the anterior (ACA), middle (MCA), and posterior (PCA) cerebral arteries of 30 healthy volunteers using two-dimensional PC-MRI at 3 T. Least detectable difference (LDD) was calculated.

Results

In the left ACA, HF was (mean (range, LDD)) 126 ml/min (36–312, 59 %), LF 61 ml/min (0–156, 101 %), PSV 64 cm/s (32–141, 67 %), and EDV 35 cm/s (18–55, 42 %); in the right ACA, HF was 154 ml/min (42–246, 49 %), LF 77 ml/min (0–156, 131 %), PSV 75 cm/s (26–161, 82 %), and EDV 39 cm/s (7–59, 67 %). In the left MCA, HF was 235 ml/min (126–372, 35 %), LF 116 ml/min (42–186, 48 %), PSV 90 cm/s (55–183, 39 %), and EDV 46 cm/s (20–66, 28 %); in the right MCA, HF was 238 ml/min (162–342, 44 %), LF 120 ml/min (72–216, 48 %), PSV 88 cm/s (55–141, 35 %), and EDV 45 cm/s (26–67, 23 %). In the left PCA, HF was 108 ml/min (42–168, 54 %), LF 53 ml/min (18–108, 64 %), PSV 50 cm/s (24–77, 63 %), and EDV 28 cm/s (14–40, 45 %); in the right PCA, HF was 98 ml/min (30–162, 49 %), LF 49 ml/min (12–84, 55 %), PSV 47 cm/s (27–88, 59 %), and EDV 27 cm/s (16–41, 45 %).

Conclusion

PC-MRI-measured flow and velocity parameters in the main intracranial arteries have large normal ranges. Reproducibility is highest in MCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matsumoto K, Urano M, Hirai M, Masaki H, Tenjin H, Mineura K (2000) Haemodynamic evaluation of cerebral arteriovenous malformations by quantification of transit time using high speed digital subtraction angiography: basic considerations. J Clin Neurosc : Off J Neurosurg Soc Australas 7(Suppl 1):39–41. doi:10.1054/jocn.2000.0709

    Article  Google Scholar 

  2. Pereira VM, Ouared R, Brina O, Bonnefous O, Satwiaski J, Aerts H, Ruijters D, van Nijnatten F, Perren F, Bijlenga P, Schaller K, Lovblad KO (2014) Quantification of internal carotid artery flow with digital subtraction angiography: validation of an optical flow approach with Doppler ultrasound. AJNR Am J Neuroradiol 35(1):156–163. doi:10.3174/ajnr.A3662

    Article  PubMed  Google Scholar 

  3. Kaufmann TJ, Huston J 3rd, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF (2007) Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology 243(3):812–819. doi:10.1148/radiol.2433060536

    Article  PubMed  Google Scholar 

  4. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774. doi:10.3171/jns.1982.57.6.0769

    Article  CAS  PubMed  Google Scholar 

  5. Baumgartner RW (1999) Transcranial color-coded duplex sonography. J Neurol 246(8):637–647

    Article  CAS  PubMed  Google Scholar 

  6. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630–638

    Article  CAS  Google Scholar 

  7. Nayler GL, Firmin DN, Longmore DB (1986) Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 10(5):715–722

    Article  CAS  PubMed  Google Scholar 

  8. Zhao M, Amin-Hanjani S, Ruland S, Curcio AP, Ostergren L, Charbel FT (2007) Regional cerebral blood flow using quantitative MR angiography. AJNR Am J Neuroradiol 28(8):1470–1473. doi:10.3174/ajnr.A0582

    Article  CAS  PubMed  Google Scholar 

  9. Enzmann DR, Ross MR, Marks MP, Pelc NJ (1994) Blood flow in major cerebral arteries measured by phase-contrast cine MR. AJNR Am J Neuroradiol 15(1):123–129

    CAS  PubMed  Google Scholar 

  10. Wahlin A, Ambarki K, Birgander R, Wieben O, Johnson KM, Malm J, Eklund A (2013) Measuring pulsatile flow in cerebral arteries using 4D phase-contrast MR imaging. AJNR Am J Neuroradiol 34(9):1740–1745. doi:10.3174/ajnr.A3442

    Article  CAS  PubMed  Google Scholar 

  11. Stock KW, Wetzel SG, Lyrer PA, Radu EW (2000) Quantification of blood flow in the middle cerebral artery with phase-contrast MR imaging. Eur Radiol 10(11):1795–1800

    Article  CAS  PubMed  Google Scholar 

  12. Baledent O, Fin L, Khuoy L, Ambarki K, Gauvin AC, Gondry-Jouet C, Meyer ME (2006) Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color doppler. J Magn Reson Imaging : JMRI 24(5):995–1004. doi:10.1002/jmri.20722

    Article  PubMed  Google Scholar 

  13. Meckel S, Leitner L, Bonati LH, Santini F, Schubert T, Stalder AF, Lyrer P, Markl M, Wetzel SG (2013) Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI. Neuroradiology 55(4):389–398. doi:10.1007/s00234-012-1103-z

    Article  PubMed  Google Scholar 

  14. Seitz J, Strotzer M, Schlaier J, Nitz WR, Volk M, Feuerbach S (2001) Comparison between magnetic resonance phase contrast imaging and transcranial Doppler ultrasound with regard to blood flow velocity in intracranial arteries: work in progress. J Neuroimaging : Off J Am Soc Neuroimaging 11(2):121–128

    Article  CAS  Google Scholar 

  15. Chang W, Landgraf B, Johnson KM, Kecskemeti S, Wu Y, Velikina J, Rowley H, Wieben O, Mistretta C, Turski P (2011) Velocity measurements in the middle cerebral arteries of healthy volunteers using 3D radial phase-contrast HYPRFlow: comparison with transcranial Doppler sonography and 2D phase-contrast MR imaging. AJNR Am J Neuroradiol 32(1):54–59. doi:10.3174/ajnr.A2240

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bammer R, Hope TA, Aksoy M, Alley MT (2007) Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magn Reson Med : Off J Soc Magn Reson Med / Soc Magn Reson Med 57(1):127–140. doi:10.1002/mrm.21109

    Article  Google Scholar 

  17. Wetzel S, Meckel S, Frydrychowicz A, Bonati L, Radue EW, Scheffler K, Hennig J, Markl M (2007) In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3T. AJNR Am J Neuroradiol 28(3):433–438

    CAS  PubMed  Google Scholar 

  18. Yamashita S, Isoda H, Hirano M, Takeda H, Inagawa S, Takehara Y, Alley MT, Markl M, Pelc NJ, Sakahara H (2007) Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging : JMRI 25(3):473–478. doi:10.1002/jmri.20828

    Article  PubMed  Google Scholar 

  19. van Ooij P, Zwanenburg JJ, Visser F, Majoie CB, vanBavel E, Hendrikse J, Nederveen AJ (2013) Quantification and visualization of flow in the Circle of Willis: time-resolved three-dimensional phase contrast MRI at 7 T compared with 3 T. Magn Reson Med : Off J Soc Magn Reson Med / Soc Magn Reson Med 69(3):868–876. doi:10.1002/mrm.24317

    Article  Google Scholar 

  20. Sekine T, Amano Y, Takagi R, Matsumura Y, Murai Y, Kumita S (2014) Feasibility of 4D flow MR imaging of the brain with either Cartesian y-z radial sampling or k-t SENSE: comparison with 4D Flow MR imaging using SENSE. Magn Reson Med Sci : MRMS : Off J Jpn Soc Magn Reson Med 13(1):15–24

    Google Scholar 

  21. MacDonald ME, Frayne R (2015) Phase contrast MR imaging measurements of blood flow in healthy human cerebral vessel segments. Physiol Meas 36(7):1517–1527. doi:10.1088/0967-3334/36/7/1517

    Article  PubMed  Google Scholar 

  22. Ring BA, Waddington MM (1967) Intraluminal diameters of the intracranial arteries. Vasc Surg 1(3):137–151

    Article  CAS  PubMed  Google Scholar 

  23. Tang C, Blatter DD, Parker DL (1993) Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging : JMRI 3(2):377–385

    Article  CAS  PubMed  Google Scholar 

  24. Gunnal SA, Farooqui MS, Wabale RN (2014) Anatomical variations of the circulus arteriosus in cadaveric human brains. Neurol Res Int 2014:687281. doi:10.1155/2014/687281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lotz J, Doker R, Noeske R, Schuttert M, Felix R, Galanski M, Gutberlet M, Meyer GP (2005) In vitro validation of phase-contrast flow measurements at 3 T in comparison to 1.5 T: precision, accuracy, and signal-to-noise ratios. J Magn Reson Imaging : JMRI 21(5):604–610. doi:10.1002/jmri.20275

    Article  PubMed  Google Scholar 

  26. Baumgartner RW, Mathis J, Sturzenegger M, Mattle HP (1994) A validation study on the intraobserver reproducibility of transcranial color-coded duplex sonography velocity measurements. Ultrasound Med Biol 20(3):233–237

    Article  CAS  PubMed  Google Scholar 

  27. Hsieh K, Stein K, Mono ML, Kellner-Weldon F, Verma RK, Weisstanner C, Andereggen L, Reinert M, Gralla J, Schroth G, El-Koussy M (2015) In-vivo phase contrast magnetic resonance angiography of the cerebrovascular system: a comparative study with duplex sonography. Swiss Med Wkly 145:w14155. doi:10.4414/smw.2015.14155

    PubMed  Google Scholar 

  28. Tegeler CH, Crutchfield K, Katsnelson M, Kim J, Tang R, Passmore Griffin L, Rundek T, Evans G (2013) Transcranial Doppler velocities in a large, healthy population. J Neuroimaging : Off J Am Soc Neuroimaging 23(3):466–472. doi:10.1111/j.1552-6569.2012.00711.x

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from the Swedish Stroke Foundation, Uppsala County Council and Philips Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Correia de Verdier.

Ethics declarations

We declare that all human and animal studies have been approved by the Institutional Review Board and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia de Verdier, M., Wikström, J. Normal ranges and test-retest reproducibility of flow and velocity parameters in intracranial arteries measured with phase-contrast magnetic resonance imaging. Neuroradiology 58, 521–531 (2016). https://doi.org/10.1007/s00234-016-1661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-016-1661-6

Keywords

Navigation