Skip to main content

Advertisement

Log in

Membrane Protein Quantity Control at the Endoplasmic Reticulum

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this ‘quantity control’ capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need. In this review, we discuss in detail seven proteins that are targeted by the ERAD quantity control system. Not surprisingly, ERAD-mediated protein degradation is a key regulatory feature of a variety of ER-resident proteins, including HMG-CoA reductase, cytochrome P450 3A4, IP3 receptor, and type II iodothyronine deiodinase. In addition, the ERAD quantity control system plays roles in maintaining the proper stoichiometry of multi-protein complexes by mediating the degradation of components that are produced in excess of the limiting subunit. Perhaps somewhat unexpectedly, recent evidence suggests that the ERAD quantity control system also contributes to the regulation of plasma membrane-localized signaling receptors, including the ErbB3 receptor tyrosine kinase and the GABA neurotransmitter receptors. For these substrates, a proportion of the newly synthesized yet properly folded receptors are diverted for degradation at the ER, and are unable to traffic to the plasma membrane. Given that receptor abundance or concentration within the plasma membrane plays key roles in determining signaling efficiency, these observations may point to a novel mechanism for modulating receptor-mediated cellular signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adeli K, Macri J, Mohammadi A, Kito M, Urade R, Cavallo D (1997) Apolipoprotein B is intracellularly associated with an ER-60 protease homologue in HepG2 cells. J Biol Chem 272:22489–22494

    Article  CAS  PubMed  Google Scholar 

  • Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW (2011) The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci 14:173–180

    Article  CAS  PubMed  Google Scholar 

  • Alzayady KJ, Wojcikiewicz RJ (2005) The role of Ca2 + in triggering inositol 1,4,5-trisphosphate receptor ubiquitination. Biochem J 392:601–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzayady KJ, Panning MM, Kelley GG, Wojcikiewicz RJ (2005) Involvement of the p97-Ufd1-Npl4 complex in the regulated endoplasmic reticulum-associated degradation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 280:34530–34537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin DN, Campbell MR, Moasser MM (2010) The role of HER3, the unpretentious member of the HER family, in cancer biology and cancer therapeutics. Semin Cell Dev Biol 21:944–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrojo e Drigo R, Bianco AC (2011) Type 2 deiodinase at the crossroads of thyroid hormone action. Int J Biochem Cell Biol 43:1432–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrojo e Drigo R, Fonseca TL, Werneck-de-Castro JP, Bianco AC (2013a) Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta 7:29

    Google Scholar 

  • Arrojo e Drigo R, Egri P, Jo S, Gereben B, Bianco AC (2013b) The type II deiodinase is retrotranslocated to the cytoplasm and proteasomes via p97/Atx3 complex. Mol Endocrinol 27:2105–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barel MT, Hassink GC, van Voorden S, Wiertz EJ (2006) Human cytomegalovirus-encoded US2 and US11 target unassembled MHC class I heavy chains for degradation. Mol Immunol 43:1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Baselga J, Swain SM (2009) Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9:463–475

    Article  CAS  PubMed  Google Scholar 

  • Benke D (2010) Mechanisms of GABAB receptor exocytosis, endocytosis, and degradation. Adv Pharmacol 58:93–111

    Article  CAS  PubMed  Google Scholar 

  • Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 84:835–867

    Article  CAS  PubMed  Google Scholar 

  • Borecky J, Vercesi AE (2005) Plant uncoupling mitochondrial protein and alternative oxidase: energy metabolism and stress. Biosci Rep 25:271–286

    Article  CAS  PubMed  Google Scholar 

  • Boren J, Olin K, Lee I, Chait A, Wight TN, Innerarity TL (1998) Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J Clin Invest 101:2658–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, Tong FK, Tong KI, Yoshikawa F, Furuichi T, Iwai M, Michikawa T, Mikoshiba K, Ikura M (2002) Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420:696–700

    Article  CAS  PubMed  Google Scholar 

  • Botero D, Gereben B, Goncalves C, De Jesus LA, Harney JW, Bianco AC (2002) Ubc6p and ubc7p are required for normal and substrate-induced endoplasmic reticulum-associated degradation of the human selenoprotein type 2 iodothyronine monodeiodinase. Mol Endocrinol 16:1999–2007

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54:247–264

    Article  CAS  PubMed  Google Scholar 

  • Brent GA (2012) Mechanisms of thyroid hormone action. J Clin Invest 122:3035–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodsky JL, Skach WR (2011) Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 23:464–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burr ML, Cano F, Svobodova S, Boyle LH, Boname JM, Lehner PJ (2011) HRD1 and UBE2J1 target misfolded MHC class I heavy chains for endoplasmic reticulum-associated degradation. Proc Natl Acad Sci USA 108:2034–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon B, Nedergaard J (2011) Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol 214:242–253

    Article  PubMed  Google Scholar 

  • Cao J, Wang J, Qi W, Miao HH, Ge L, DeBose-Boyd RA, Tang JJ, Li BL, Song BL (2007) Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. Cell Metab 6:115–128

    Article  CAS  PubMed  Google Scholar 

  • Carraway KL 3rd (2010) E3 ubiquitin ligases in ErbB receptor quantity control. Semin Cell Dev Biol 21:936–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho P, Stanley AM, Rapoport TA (2010) Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143:579–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Le Caherec F, Chuck SL (1998) Calnexin and other factors that alter translocation affect the rapid binding of ubiquitin to apoB in the Sec61 complex. J Biol Chem 273:11887–11894

    Article  CAS  PubMed  Google Scholar 

  • Choi K, Kim H, Kang H, Lee SY, Lee SJ, Back SH, Lee SH, Kim MS, Lee JE, Park JY, Kim J, Kim S, Song JH, Choi Y, Lee S, Lee HJ, Kim JH, Cho S (2014) Regulation of diacylglycerol acyltransferase 2 protein stability by gp78-associated endoplasmic-reticulum-associated degradation. FEBS J 281:3048–3060

    Article  CAS  PubMed  Google Scholar 

  • Chun KT, Bar-Nun S, Simoni RD (1990) The regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase requires a short-lived protein and occurs in the endoplasmic reticulum. J Biol Chem 265:22004–22010

    CAS  PubMed  Google Scholar 

  • Curcio-Morelli C, Zavacki AM, Christofollete M, Gereben B, de Freitas BC, Harney JW, Li Z, Wu G, Bianco AC (2003) Deubiquitination of type 2 iodothyronine deiodinase by von Hippel-Lindau protein-interacting deubiquitinating enzymes regulates thyroid hormone activation. J Clin Invest 112:189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darom A, Bening-Abu-Shach U, Broday L (2010) RNF-121 is an endoplasmic reticulum-membrane E3 ubiquitin ligase involved in the regulation of beta-integrin. Mol Biol Cell 21:1788–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBose-Boyd RA (2008) Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 18:609–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dentice M, Bandyopadhyay A, Gereben B, Callebaut I, Christoffolete MA, Kim BW, Nissim S, Mornon JP, Zavacki AM, Zeold A, Capelo LP, Curcio-Morelli C, Ribeiro R, Harney JW, Tabin CJ, Bianco AC (2005) The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol 7:698–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamonti AJ, Guy PM, Ivanof C, Wong K, Sweeney C, Carraway KL 3rd (2002) An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels. Proc Natl Acad Sci U S A 99:2866–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon JL, Furukawa S, Ginsberg HN (1991) Oleate stimulates secretion of apolipoprotein B-containing lipoproteins from Hep G2 cells by inhibiting early intracellular degradation of apolipoprotein B. J Biol Chem 266:5080–5086

    CAS  PubMed  Google Scholar 

  • Dunn R, Hicke L (2001) Multiple roles for Rsp5p-dependent ubiquitination at the internalization step of endocytosis. J Biol Chem 276:25974–25981

    Article  CAS  PubMed  Google Scholar 

  • Engelman JA, Cantley LC (2006) The role of the ErbB family members in non-small cell lung cancers sensitive to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res 12:4372s–4376s

    Article  CAS  PubMed  Google Scholar 

  • Erickson SL, O’Shea KS, Ghaboosi N, Loverro L, Frantz G, Bauer M, Lu LH, Moore MW (1997) ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development 124:4999–5011

    CAS  PubMed  Google Scholar 

  • Faouzi S, Medzihradszky KF, Hefner C, Maher JJ, Correia MA (2007) Characterization of the physiological turnover of native and inactivated cytochromes P450 3A in cultured rat hepatocytes: a role for the cytosolic AAA ATPase p97? Biochemistry 46:7793–7803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher EA, Lapierre LR, Junkins RD, McLeod RS (2008) The AAA-ATPase p97 facilitates degradation of apolipoprotein B by the ubiquitin-proteasome pathway. J Lipid Res 49:2149–2160

    Article  CAS  PubMed  Google Scholar 

  • Fisher EA, Khanna NA, McLeod RS (2011) Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway. J Lipid Res 52:1170–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry WH, Simion C, Sweeney C, Carraway KL 3rd (2011) Quantity control of the ErbB3 receptor tyrosine kinase at the endoplasmic reticulum. Mol Cell Biol 31:3009–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K (2004) Food-drug interactions via human cytochrome P450 3A (CYP3A). Drug Metabol Drug Interact 20:195–217

    Article  CAS  PubMed  Google Scholar 

  • Furuichi T, Mikoshiba K (1995) Inositol 1,4,5-trisphosphate receptor-mediated Ca2+ signaling in the brain. J Neurochem 64:953–960

    Article  CAS  PubMed  Google Scholar 

  • Furukawa S, Sakata N, Ginsberg HN, Dixon JL (1992) Studies of the sites of intracellular degradation of apolipoprotein B in Hep G2 cells. J Biol Chem 267:22630–22638

    CAS  PubMed  Google Scholar 

  • Gardner RG, Shearer AG, Hampton RY (2001) In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol Cell Biol 21:4276–4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garza RM, Sato BK, Hampton RY (2009) In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. J Biol Chem 284:14710–14722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann M, Bettler B (2012) Regulation of neuronal GABA(B) receptor functions by subunit composition. Nat Rev Neurosci 13:380–394

    Article  CAS  PubMed  Google Scholar 

  • Gereben B, Goncalves C, Harney JW, Larsen PR, Bianco AC (2000) Selective proteolysis of human type 2 deiodinase: a novel ubiquitin-proteasomal mediated mechanism for regulation of hormone activation. Mol Endocrinol 14:1697–1708

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg HN, Fisher EA (2009) The ever-expanding role of degradation in the regulation of apolipoprotein B metabolism. J Lipid Res 50:2

    Article  CAS  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  PubMed  Google Scholar 

  • Gregersen N, Bross P, Vang S, Christensen JH (2006) Protein misfolding and human disease. Annu Rev Genom Hum Genet 7:103–124

    Article  CAS  Google Scholar 

  • Guo X, Shen S, Song S, He S, Cui Y, Xing G, Wang J, Yin Y, Fan L, He F, Zhang L (2011) The E3 ligase Smurf1 regulates Wolfram syndrome protein stability at the endoplasmic reticulum. J Biol Chem 286:18037–18047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gusarova V, Caplan AJ, Brodsky JL, Fisher EA (2001) Apoprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70. J Biol Chem 276:24891–24900

    Article  CAS  PubMed  Google Scholar 

  • Hamburger AW (2008) The role of ErbB3 and its binding partners in breast cancer progression and resistance to hormone and tyrosine kinase directed therapies. J Mammary Gland Biol Neoplasia 13:225–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampton RY, Rine J (1994) Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol 125:299–312

    Article  CAS  PubMed  Google Scholar 

  • Hartman IZ, Liu P, Zehmer JK, Luby-Phelps K, Jo Y, Anderson RG, DeBose-Boyd RA (2010) Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J Biol Chem 285:19288–19298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama J, Wald JH, Rafidi H, Cuevas A, Sweeney C, Carraway KL 3rd (2016) The ER structural protein Rtn4A stabilizes and enhances signaling through the receptor tyrosine kinase ErbB3. Sci Signal 9:rar65

    Article  Google Scholar 

  • Hayashi T, Hayashi E, Fujimoto M, Sprong H, Su TP (2012) The lifetime of UDP-galactose:ceramide galactosyltransferase is controlled by a distinct endoplasmic reticulum-associated degradation (ERAD) regulated by sigma-1 receptor chaperones. J Biol Chem 287:43156–43169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde RS, Ploegh HL (2010) Quality and quantity control at the endoplasmic reticulum. Curr Opin Cell Biol 22:437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13:89–102

    CAS  PubMed  Google Scholar 

  • Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98

    Article  CAS  PubMed  Google Scholar 

  • Horimoto S, Ninagawa S, Okada T, Koba H, Sugimoto T, Kamiya Y, Kato K, Takeda S, Mori K (2013) The unfolded protein response transducer ATF6 represents a novel transmembrane-type endoplasmic reticulum-associated degradation substrate requiring both mannose trimming and SEL1L protein. J Biol Chem 288:31517–31527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrizo SL, Gusarova V, Habiel DM, Goeckeler JL, Fisher EA, Brodsky JL (2007) The Hsp110 molecular chaperone stabilizes apolipoprotein B from endoplasmic reticulum-associated degradation (ERAD). J Biol Chem 282:32665–32675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes EA, Hammond C, Cresswell P (1997) Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc Natl Acad Sci USA 94:1896–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes BT, Nwosu CC, Espenshade PJ (2009) Degradation of sterol regulatory element-binding protein precursor requires the endoplasmic reticulum-associated degradation components Ubc7 and Hrd1 in fission yeast. J Biol Chem 284:20512–20521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21:177–184

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Bar-Nun S, Roitelman J, Simoni RD (1991) Inhibition of degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo by cysteine protease inhibitors. J Biol Chem 266:13311–13317

    CAS  PubMed  Google Scholar 

  • Ishikura S, Weissman AM, Bonifacino JS (2010) Serine residues in the cytosolic tail of the T-cell antigen receptor alpha-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J Biol Chem 285:23916–23924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson-Fisher AJ, Bellinger G, Breindel JL, Tavassoli FA, Booth CJ, Duong JK, Stern DF (2008) ErbB3 is required for ductal morphogenesis in the mouse mammary gland. Breast Cancer Res 10:18

    Article  CAS  Google Scholar 

  • Jaenicke LA, Brendebach H, Selbach M, Hirsch C (2011) Yos9p assists in the degradation of certain nonglycosylated proteins from the endoplasmic reticulum. Mol Biol Cell 22:2937–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo Y, Debose-Boyd RA (2010) Control of cholesterol synthesis through regulated ER-associated degradation of HMG CoA reductase. Crit Rev Biochem Mol Biol 45:185–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo Y, Lee PC, Sguigna PV, DeBose-Boyd RA (2011) Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8. Proc Natl Acad Sci USA 108:20503–20508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo Y, Hartman IZ, DeBose-Boyd RA (2013) Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet-associated endoplasmic reticulum membranes. Mol Biol Cell 24:169–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson PR, Swanson R, Rakhilina L, Hochstrasser M (1998) Degradation signal masking by heterodimerization of MATalpha2 and MATa1 blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell 94:217–227

    Article  CAS  PubMed  Google Scholar 

  • Khan MT, Joseph SK (2003) Proteolysis of type I inositol 1,4,5-trisphosphate receptor in WB rat liver cells. Biochem J 375:603–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikkert M, Doolman R, Dai M, Avner R, Hassink G, van Voorden S, Thanedar S, Roitelman J, Chau V, Wiertz E (2004) Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J Biol Chem 279:3525–3534

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Acharya P, Engel JC, Correia MA (2010) Liver cytochrome P450 3A ubiquitination in vivo by gp78/autocrine motility factor receptor and C terminus of Hsp70-interacting protein (CHIP) E3 ubiquitin ligases: physiological and pharmacological relevance. J Biol Chem 285:35866–35877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM (1992) Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355:446–449

    Article  CAS  PubMed  Google Scholar 

  • Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  • Laney JD, Hochstrasser M (2003) Ubiquitin-dependent degradation of the yeast Mat(alpha)2 repressor enables a switch in developmental state. Genes Dev 17:2259–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecureux LW, Wattenberg BW (1994) The regulated degradation of a 3-hydroxy-3-methylglutaryl-coenzyme A reductase reporter construct occurs in the endoplasmic reticulum. J Cell Sci 107:2635–2642

    CAS  PubMed  Google Scholar 

  • Leichner GS, Avner R, Harats D, Roitelman J (2009) Dislocation of HMG-CoA reductase and Insig-1, two polytopic endoplasmic reticulum proteins, en route to proteasomal degradation. Mol Biol Cell 20:3330–3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemoine NR, Barnes DM, Hollywood DP, Hughes CM, Smith P, Dublin E, Prigent SA, Gullick WJ, Hurst HC (1992) Expression of the ERBB3 gene product in breast cancer. Br J Cancer 66:1116–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerner M, Corcoran M, Cepeda D, Nielsen ML, Zubarev R, Ponten F, Uhlen M, Hober S, Grander D, Sangfelt O (2007) The RBCC gene RFP2 (Leu5) encodes a novel transmembrane E3 ubiquitin ligase involved in ERAD. Mol Biol Cell 18:1670–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang JS, Kim T, Fang S, Yamaguchi J, Weissman AM, Fisher EA, Ginsberg HN (2003) Overexpression of the tumor autocrine motility factor receptor Gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells. J Biol Chem 278:23984–23988

    Article  CAS  PubMed  Google Scholar 

  • Liao M, Faouzi S, Karyakin A, Correia MA (2006) Endoplasmic reticulum-associated degradation of cytochrome P450 CYP3A4 in Saccharomyces cerevisiae: further characterization of cellular participants and structural determinants. Mol Pharmacol 69:1897–1904

    Article  CAS  PubMed  Google Scholar 

  • Lu JP, Wang Y, Sliter DA, Pearce MM, Wojcikiewicz RJ (2011) RNF170 protein, an endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-trisphosphate receptor ubiquitination and degradation. J Biol Chem 286:24426–24433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukacs GL, Verkman AS (2012) CFTR: folding, misfolding and correcting the DeltaF508 conformational defect. Trends Mol Med 18:81–91

    Article  CAS  PubMed  Google Scholar 

  • Magadan JG, Perez-Victoria FJ, Sougrat R, Ye Y, Strebel K, Bonifacino JS (2010) Multilayered mechanism of CD4 downregulation by HIV-1 Vpu involving distinct ER retention and ERAD targeting steps. PLoS Pathog 6:1000869

    Article  CAS  Google Scholar 

  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100–105

    Article  CAS  PubMed  Google Scholar 

  • Meigs TE, Roseman DS, Simoni RD (1996) Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation by the nonsterol mevalonate metabolite farnesol in vivo. J Biol Chem 271:7916–7922

    Article  CAS  PubMed  Google Scholar 

  • Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7:766–772

    Article  CAS  PubMed  Google Scholar 

  • Mikoshiba K (2007) IP3 receptor/Ca2 + channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446

    Article  CAS  PubMed  Google Scholar 

  • Morito D, Hirao K, Oda Y, Hosokawa N, Tokunaga F, Cyr DM, Tanaka K, Iwai K, Nagata K (2008) Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol Biol Cell 19:1328–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriyama T, Wada M, Urade R, Kito M, Katunuma N, Ogawa T, Simoni RD (2001) 3-hydroxy-3-methylglutaryl coenzyme A reductase is sterol-dependently cleaved by cathepsin L-type cysteine protease in the isolated endoplasmic reticulum. Arch Biochem Biophys 386:205–212

    Article  CAS  PubMed  Google Scholar 

  • Murray BP, Correia MA (2001) Ubiquitin-dependent 26S proteasomal pathway: a role in the degradation of native human liver CYP3A4 expressed in Saccharomyces cerevisiae? Arch Biochem Biophys 393:106–116

    Article  CAS  PubMed  Google Scholar 

  • Nagai A, Kadowaki H, Maruyama T, Takeda K, Nishitoh H, Ichijo H (2009) USP14 inhibits ER-associated degradation via interaction with IRE1alpha. Biochem Biophys Res Commun 379:995–1000

    Article  CAS  PubMed  Google Scholar 

  • Narjoz C, Marisa L, Imbeaud S, Paris A, Delacroix H, Beaune P, De Waziers I (2009) Genomic consequences of cytochrome P450 2C9 overexpression in human hepatoma cells. Chem Res Toxicol 22:779–787

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B (2001) UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 1:82–106

    Article  Google Scholar 

  • Ogu CC, Maxa JL (2000) Drug interactions due to cytochrome P450. Proc 13:421–423

    CAS  Google Scholar 

  • Olofsson SO, Boren J (2012) Apolipoprotein B secretory regulation by degradation. Arterioscler Thromb Vasc Biol 32:1334–1338

    Article  CAS  PubMed  Google Scholar 

  • Omura T, Kaneko M, Okuma Y, Orba Y, Nagashima K, Takahashi R, Fujitani N, Matsumura S, Hata A, Kubota K, Murahashi K, Uehara T, Nomura Y (2006) A ubiquitin ligase HRD1 promotes the degradation of Pael receptor, a substrate of Parkin. J Neurochem 99:1456–1469

    Article  CAS  PubMed  Google Scholar 

  • Ortiz de Montellano PR (2005) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer, New York

    Book  Google Scholar 

  • Ota T, Gayet C, Ginsberg HN (2008) Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Invest 118:316–332

    Article  CAS  PubMed  Google Scholar 

  • Pabarcus MK, Hoe N, Sadeghi S, Patterson C, Wiertz E, Correia MA (2009) CYP3A4 ubiquitination by gp78 (the tumor autocrine motility factor receptor, AMFR) and CHIP E3 ligases. Arch Biochem Biophys 483:66–74

    Article  CAS  PubMed  Google Scholar 

  • Pan M, Cederbaum AI, Zhang YL, Ginsberg HN, Williams KJ, Fisher EA (2004) Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. J Clin Invest 113:1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce MM, Wang Y, Kelley GG, Wojcikiewicz RJ (2007) SPFH2 mediates the endoplasmic reticulum-associated degradation of inositol 1,4,5-trisphosphate receptors and other substrates in mammalian cells. J Biol Chem 282:20104–20115

    Article  CAS  PubMed  Google Scholar 

  • Pearce MM, Wormer DB, Wilkens S, Wojcikiewicz RJ (2009) An endoplasmic reticulum (ER) membrane complex composed of SPFH1 and SPFH2 mediates the ER-associated degradation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 284:10433–10445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petras SF, Lindsey S, Harwood HJ Jr (1999) HMG-CoA reductase regulation: use of structurally diverse first half-reaction squalene synthetase inhibitors to characterize the site of mevalonate-derived nonsterol regulator production in cultured IM-9 cells. J Lipid Res 40:24–38

    CAS  PubMed  Google Scholar 

  • Printsev I, Yen L, Sweeney C, Carraway KL 3rd (2014) Oligomerization of the Nrdp1 E3 ubiquitin ligase is necessary for efficient autoubiquitination but not ErbB3 ubiquitination. J Biol Chem 289:8570–8578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu W, Kohen-Avramoglu R, Rashid-Kolvear F, Au CS, Chong TM, Lewis GF, Trinh DK, Austin RC, Urade R, Adeli K (2004) Overexpression of the endoplasmic reticulum 60 protein ER-60 downregulates apoB100 secretion by inducing its intracellular degradation via a nonproteasomal pathway: evidence for an ER-60-mediated and pCMB-sensitive intracellular degradative pathway. Biochemistry 43:4819–4831

    Article  CAS  PubMed  Google Scholar 

  • Qiu W, Kohen-Avramoglu R, Mhapsekar S, Tsai J, Austin RC, Adeli K (2005) Glucosamine-induced endoplasmic reticulum stress promotes ApoB100 degradation: evidence for Grp78-mediated targeting to proteasomal degradation. Arterioscler Thromb Vasc Biol 25:571–577

    Article  CAS  PubMed  Google Scholar 

  • Ravid T, Kreft SG, Hochstrasser M (2006) Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J 25:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravuri C, Svineng G, Huseby NE (2013) Differential regulation of γ-glutamyltransferase and glutamate cysteine ligase expression after mitochondrial uncoupling: γ-glutamyltransferase is regulated in an Nrf2- and NFκB-independent manner. Free Radic Res 47:394–403

    Article  CAS  PubMed  Google Scholar 

  • Riethmacher D, Sonnenberg-Riethmacher E, Brinkmann V, Yamaai T, Lewin GR, Birchmeier C (1997) Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389:725–730

    Article  CAS  PubMed  Google Scholar 

  • Roberts BJ (1997) Evidence of proteasome-mediated cytochrome P-450 degradation. J Biol Chem 272:9771–9778

    Article  CAS  PubMed  Google Scholar 

  • Rochat B (2005) Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance: focus on tamoxifen, paclitaxel and imatinib metabolism. Clin Pharmacokinet 44:349–366

    Article  CAS  PubMed  Google Scholar 

  • Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409

    Article  CAS  PubMed  Google Scholar 

  • Rutledge AC, Qiu W, Zhang R, Kohen-Avramoglu R, Nemat-Gorgani N, Adeli K (2009) Mechanisms targeting apolipoprotein B100 to proteasomal degradation: evidence that degradation is initiated by BiP binding at the N terminus and the formation of a p97 complex at the C terminus. Arterioscler Thromb Vasc Biol 29:579–585

    Article  CAS  PubMed  Google Scholar 

  • Rutledge AC, Qiu W, Zhang R, Urade R, Adeli K (2013) Role of cysteine-protease CGHC motifs of ER-60, a protein disulfide isomerase, in hepatic apolipoprotein B100 degradation. Arch Biochem Biophys 537:104–112

    Article  CAS  PubMed  Google Scholar 

  • Saeed M, Suzuki R, Watanabe N, Masaki T, Tomonaga M, Muhammad A, Kato T, Matsuura Y, Watanabe H, Wakita T, Suzuki T (2011) Role of the endoplasmic reticulum-associated degradation (ERAD) pathway in degradation of hepatitis C virus envelope proteins and production of virus particles. J Biol Chem 286:37264–37273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saliba RS, Michels G, Jacob TC, Pangalos MN, Moss SJ (2007) Activity-dependent ubiquitination of GABA(A) receptors regulates their accumulation at synaptic sites. J Neurosci 27:13341–13351

    Article  CAS  PubMed  Google Scholar 

  • Saliba RS, Pangalos M, Moss SJ (2008) The ubiquitin-like protein Plic-1 enhances the membrane insertion of GABAA receptors by increasing their stability within the endoplasmic reticulum. J Biol Chem 283(27):18538–18544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato R, Imanaka T, Takatsuki A, Takano T (1990) Degradation of newly synthesized apolipoprotein B-100 in a pre-Golgi compartment. J Biol Chem 265:11880–11884

    CAS  PubMed  Google Scholar 

  • Shearer AG, Hampton RY (2005) Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. EMBO J 24:149–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423

    CAS  PubMed  Google Scholar 

  • Sibilia M, Kroismayr R, Lichtenberger BM, Natarajan A, Hecking M, Holcmann M (2007) The epidermal growth factor receptor: from development to tumorigenesis. Differentiation 75:770–787

    Article  CAS  PubMed  Google Scholar 

  • Sniderman A, Couture P, de Graaf J (2010) Diagnosis and treatment of apolipoprotein B dyslipoproteinemias. Nat Rev Endocrinol 6:335–346

    Article  CAS  PubMed  Google Scholar 

  • Snyder PM (2002) The epithelial Na + channel: cell surface insertion and retrieval in Na+ homeostasis and hypertension. Endocr Rev 23:258–275

    Article  CAS  PubMed  Google Scholar 

  • Song BL, Javitt NB, DeBose-Boyd RA (2005a) Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metab 1:179–189

    Article  CAS  PubMed  Google Scholar 

  • Song BL, Sever N, DeBose-Boyd RA (2005b) Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol Cell 19:829–840

    Article  CAS  PubMed  Google Scholar 

  • Steinsapir J, Harney J, Larsen PR (1998) Type 2 iodothyronine deiodinase in rat pituitary tumor cells is inactivated in proteasomes. J Clin Invest 102:1895–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern DF (2008) ERBB3/HER3 and ERBB2/HER2 duet in mammary development and breast cancer. J Mammary Gland Biol Neoplasia 13:215–223

    Article  PubMed  Google Scholar 

  • Suzuki M, Otsuka T, Ohsaki Y, Cheng J, Taniguchi T, Hashimoto H, Taniguchi H, Fujimoto T (2012) Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol Biol Cell 23:800–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka RD, Li AC, Fogelman AM, Edwards PA (1986) Inhibition of lysosomal protein degradation inhibits the basal degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Lipid Res 27:261–273

    CAS  PubMed  Google Scholar 

  • Tyler RE, Pearce MM, Shaler TA, Olzmann JA, Greenblatt EJ, Kopito RR (2012) Unassembled CD147 is an endogenous endoplasmic reticulum-associated degradation substrate. Mol Biol Cell 23:4668–4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vashist S, Ng DT (2004) Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J Cell Biol 165:41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HF, Figueiredo Pereira ME, Correia MA (1999) Cytochrome P450 3A degradation in isolated rat hepatocytes: 26S proteasome inhibitors as probes. Arch Biochem Biophys 365:45–53

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liao M, Hoe N, Acharya P, Deng C, Krutchinsky AN, Correia MA (2009a) A role for protein phosphorylation in cytochrome P450 3A4 ubiquitin-dependent proteasomal degradation. J Biol Chem 284:5671–5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Pearce MM, Sliter DA, Olzmann JA, Christianson JC, Kopito RR, Boeckmann S, Gagen C, Leichner GS, Roitelman J, Wojcikiewicz RJ (2009b) SPFH1 and SPFH2 mediate the ubiquitination and degradation of inositol 1,4,5-trisphosphate receptors in muscarinic receptor-expressing HeLa cells. Biochim Biophys Acta 11:12

    Google Scholar 

  • Wang F, Olson EM, Shyng SL (2012a) Role of Derlin-1 protein in proteostasis regulation of ATP-sensitive potassium channels. J Biol Chem 287:10482–10493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Guan S, Acharya P, Liu Y, Thirumaran RK, Brandman R, Schuetz EG, Burlingame AL, Correia MA (2012b) Multisite phosphorylation of human liver cytochrome P450 3A4 enhances Its gp78- and CHIP-mediated ubiquitination: a pivotal role of its Ser-478 residue in the gp78-catalyzed reaction. Mol Cell Proteomics 11:17

    CAS  Google Scholar 

  • Wang X, Yu YY, Myers N, Hansen TH (2013) Decoupling the role of ubiquitination for the dislocation versus degradation of major histocompatibility complex (MHC) class I proteins during endoplasmic reticulum-associated degradation (ERAD). J Biol Chem 288:23295–23306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster JM, Tiwari S, Weissman AM, Wojcikiewicz RJ (2003) Inositol 1,4,5-trisphosphate receptor ubiquitination is mediated by mammalian Ubc7, a component of the endoplasmic reticulum-associated degradation pathway, and is inhibited by chelation of intracellular Zn2+. J Biol Chem 278:38238–38246

    Article  CAS  PubMed  Google Scholar 

  • Wojcikiewicz RJ, Nahorski SR (1991) Chronic muscarinic stimulation of SH-SY5Y neuroblastoma cells suppresses inositol 1,4,5-trisphosphate action. Parallel inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ mobilization and inositol 1,4,5-trisphosphate binding. J Biol Chem 266:22234–22241

    CAS  PubMed  Google Scholar 

  • Wojcikiewicz RJ, Oberdorf JA (1996) Degradation of inositol 1,4,5-trisphosphate receptors during cell stimulation is a specific process mediated by cysteine protease activity. J Biol Chem 271:16652–16655

    Article  CAS  PubMed  Google Scholar 

  • Wojcikiewicz RJ, Furuichi T, Nakade S, Mikoshiba K, Nahorski SR (1994) Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. J Biol Chem 269:7963–7969

    CAS  PubMed  Google Scholar 

  • Wojcikiewicz RJ, Ernst SA, Yule DI (1999) Secretagogues cause ubiquitination and down-regulation of inositol 1, 4,5-trisphosphate receptors in rat pancreatic acinar cells. Gastroenterology 116:1194–1201

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Zhao F, Gao B, Tan C, Yagishita N, Nakajima T, Wong PK, Chapman E, Fang D, Zhang DD (2014) Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev 28:708–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi J, Conlon DM, Liang JJ, Fisher EA, Ginsberg HN (2006) Translocation efficiency of apolipoprotein B is determined by the presence of beta-sheet domains, not pause transfer sequences. J Biol Chem 281:27063–27071

    Article  CAS  PubMed  Google Scholar 

  • Yen L, Cao Z, Wu X, Ingalla ER, Baron C, Young LJ, Gregg JP, Cardiff RD, Borowsky AD, Sweeney C, Carraway KL 3rd (2006) Loss of Nrdp1 enhances ErbB2/ErbB3-dependent breast tumor cell growth. Cancer Res 66:11279–11286

    Article  CAS  PubMed  Google Scholar 

  • Zavacki AM, Arrojo EDR, Freitas BC, Chung M, Harney JW, Egri P, Wittmann G, Fekete C, Gereben B, Bianco AC (2009) The E3 ubiquitin ligase TEB4 mediates degradation of type 2 iodothyronine deiodinase. Mol Cell Biol 29:5339–5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemoura K, Benke D (2014) Proteasomal degradation of gamma-aminobutyric acidB receptors is mediated by the interaction of the GABAB2 C terminus with the proteasomal ATPase Rtp6 and regulated by neuronal activity. J Biol Chem 289:7738–7746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemoura K, Schenkel M, Acuna MA, Yevenes GE, Zeilhofer HU, Benke D (2013) Endoplasmic reticulum-associated degradation controls cell surface expression of gamma-aminobutyric acid, type B receptors. J Biol Chem 288:34897–34905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Salary support for the authors was provided by NIH predoctoral fellowship CA165546 (IP), and by NIH Grants CA123541, CA166412 and CA178681 (KLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kermit L. Carraway III.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Printsev, I., Curiel, D. & Carraway, K.L. Membrane Protein Quantity Control at the Endoplasmic Reticulum. J Membrane Biol 250, 379–392 (2017). https://doi.org/10.1007/s00232-016-9931-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9931-0

Keywords

Navigation