Skip to main content
Log in

Pharmacological Inhibition of Protein Lipidation

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Lipid modifications of mammalian proteins are widespread, modifying thousands of targets involved in all aspects of cellular physiology cellular physiology. Broadly, lipidations serve to increase protein hydrophobicity and association with cellular membranes. Often, these modifications are absolutely essential for protein stability and localization, and serve critical roles in dynamic regulation of protein function. A number of lipidated proteins are associated with diseases, including parasite infections, neurological diseases, diabetes, and cancer, suggesting that lipid modifications represent potentially attractive targets for pharmacological intervention. This review briefly describes the various types of posttranslational protein lipid modifications, proteins modified by them, and the enzymatic machinery associated with these. We then discuss several case studies demonstrating successful development of lipidation inhibitors of potential (and more rarely, realized) clinical value. Although this field remains in its infancy, we believe these examples demonstrate the potential utility of targeting protein lipidation as a viable strategy for inhibiting the function of pathogenic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adibekian A, Martin BR, Speers AE, Brown SJ, Spicer T, Fernandez-Vega V, Ferguson J, Cravatt BF, Hodder P, Rosen H (2010) Optimization and characterization of a triazole urea dual inhibitor for lysophospholipase 1 (LYPLA1) and lysophospholipase 2 (LYPLA2). In Probe Reports from the NIH Molecular Libraries Program, Bethesda

    Google Scholar 

  • Adibekian A, Martin BR, Chang JW, Hsu KL, Tsuboi K, Bachovchin DA, Speers AE, Brown SJ, Spicer T, Fernandez-Vega V, Ferguson J, Hodder PS, Rosen H, Cravatt BF (2012) Confirming target engagement for reversible inhibitors in vivo by kinetically tuned activity-based probes. J Am Chem Soc 134:10345–10348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barnett BP, Hwang Y, Taylor MS, Kirchner H, Pfluger PT, Bernard V, Lin YY, Bowers EM, Mukherjee C, Song WJ, Longo PA, Leahy DJ, Hussain MA, Tschop MH, Boeke JD, Cole PA (2010) Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 330:1689–1692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bell AS, Mills JE, Williams GP, Brannigan JA, Wilkinson AJ, Parkinson T, Leatherbarrow RJ, Tate EW, Holder AA, Smith DF (2012) Selective inhibitors of protozoan protein N-myristoyltransferases as starting points for tropical disease medicinal chemistry programs. PLoS Negl Trop Dis 6:e1625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhatnagar RS, Gordon JI (1997) Understanding covalent modifications of proteins by lipids: where cell biology and biophysics mingle. Trends Cell Biol 7:14–20

    Article  CAS  PubMed  Google Scholar 

  • Camp LA, Verkruyse LA, Afendis SJ, Slaughter CA, Hofmann SL (1994) Molecular cloning and expression of palmitoyl-protein thioesterase. J Biol Chem 269:23212–23219

    CAS  PubMed  Google Scholar 

  • Chatterjee S, Mayor S (2001) The GPI-anchor and protein sorting. Cell Mol Life Sci 58:1969–1987

    Article  CAS  PubMed  Google Scholar 

  • Chavda B, Arnott JA, Planey SL (2014) Targeting protein palmitoylation: selective inhibitors and implications in disease. Expert Opin Drug Discov 9:1005–1019

    Article  CAS  PubMed  Google Scholar 

  • Chen CA, Manning DR (2001) Regulation of G proteins by covalent modification. Oncogene 20:1643–1652

    Article  CAS  PubMed  Google Scholar 

  • Chen MH, Li YJ, Kawakami T, Xu SM, Chuang PT (2004) Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev 18:641–659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cooper MK, Wassif CA, Krakowiak PA, Taipale J, Gong R, Kelley RI, Porter FD, Beachy PA (2003) A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat Genet 33:508–513

    Article  CAS  PubMed  Google Scholar 

  • Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13:828–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cuiffo B, Ren R (2010) Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood 115:3598–3605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Das AK, Dasgupta B, Bhattacharya R, Basu J (1997) Purification and biochemical characterization of a protein-palmitoyl acyltransferase from human erythrocytes. J Biol Chem 272:11021–11025

    Article  CAS  PubMed  Google Scholar 

  • Davda D, El Azzouny MA, Tom CT, Hernandez JL, Majmudar JD, Kennedy RT, Martin BR (2013) Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate. ACS Chem Biol 8:1912–1917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Vos ML, Lawrence DS, Smith CD (2001) Cellular pharmacology of cerulenin analogs that inhibit protein palmitoylation. Biochem Pharmacol 62:985–995

    Article  PubMed  Google Scholar 

  • Dekker FJ, Hedberg C (2011) Small molecule inhibition of protein depalmitoylation as a new approach towards downregulation of oncogenic Ras signalling. Bioorgan Med Chem 19:1376–1380

    Article  CAS  Google Scholar 

  • Dekker FJ, Rocks O, Vartak N, Menninger S, Hedberg C, Balamurugan R, Wetzel S, Renner S, Gerauer M, Scholermann B, Rusch M, Kramer JW, Rauh D, Coates GW, Brunsveld L, Bastiaens PI, Waldmann H (2010) Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat Chem Biol 6:449–456

    Article  CAS  PubMed  Google Scholar 

  • Dietrich LE, Ungermann C (2004) On the mechanism of protein palmitoylation. EMBO Rep 5:1053–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eisenhaber B, Bork P, Eisenhaber F (2001) Post-translational GPI lipid anchor modification of proteins in kingdoms of life: analysis of protein sequence data from complete genomes. Protein Eng 14:17–25

    Article  CAS  PubMed  Google Scholar 

  • End DW, Smets G, Todd AV, Applegate TL, Fuery CJ, Angibaud P, Venet M, Sanz G, Poignet H, Skrzat S, Devine A, Wouters W, Bowden C (2001) Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res 61:131–137

    CAS  PubMed  Google Scholar 

  • Fiordalisi JJ, Johnson RL 2nd, Weinbaum CA, Sakabe K, Chen Z, Casey PJ, Cox AD (2003) High affinity for farnesyltransferase and alternative prenylation contribute individually to K-Ras4B resistance to farnesyltransferase inhibitors. J Biol Chem 278:41718–41727

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Arenas-Ramirez N, Scales SJ, Hannoush RN (2011) Membrane targeting of palmitoylated Wnt and Hedgehog revealed by chemical probes. FEBS Lett 585:2501–2506

    Article  CAS  PubMed  Google Scholar 

  • Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, Santoro A, Laezza C, Bifulco M (2012) Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev 64:102–146

    Article  CAS  PubMed  Google Scholar 

  • Goodwin JS, Drake KR, Rogers C, Wright L, Lippincott-Schwartz J, Philips MR, Kenworthy AK (2005) Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J Cell Biol 170:261–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD, Fligor B, Bishop WR, Statkevich P, Regen A, Sonis A, Riley S, Ploski C, Correia A, Quinn N, Ullrich NJ, Nazarian A, Liang MG, Huh SY, Schwartzman A, Kieran MW (2012) Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci USA 109:16666–16671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greaves J, Chamberlain LH (2011) DHHC palmitoyl transferases: substrate interactions and (patho) physiology. Trends Biochem Sci 36:245–253

    Article  CAS  PubMed  Google Scholar 

  • Gysin S, Salt M, Young A, McCormick F (2011) Therapeutic strategies for targeting ras proteins. Genes Cancer 2:359–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hancock JF, Paterson H, Marshall CJ (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63:133–139

    Article  CAS  PubMed  Google Scholar 

  • Hang HC, Linder ME (2011) Exploring protein lipidation with chemical biology. Chem Rev 111:6341–6358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heal WP, Jovanovic B, Bessin S, Wright MH, Magee AI, Tate EW (2011) Bioorthogonal chemical tagging of protein cholesterylation in living cells. Chem Commun 47:4081–4083

    Article  CAS  Google Scholar 

  • Hedberg C, Dekker FJ, Rusch M, Renner S, Wetzel S, Vartak N, Gerding-Reimers C, Bon RS, Bastiaens PI, Waldmann H (2011) Development of highly potent inhibitors of the Ras-targeting human acyl protein thioesterases based on substrate similarity design. Angew Chem 50:9832–9837

    Article  CAS  Google Scholar 

  • Hulce JJ, Cognetta AB, Niphakis MJ, Tully SE, Cravatt BF (2013) Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat Methods 10:259–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hutton JA, Goncalves V, Brannigan JA, Paape D, Wright MH, Waugh TM, Roberts SM, Bell AS, Wilkinson AJ, Smith DF, Leatherbarrow RJ, Tate EW (2014) Structure-based design of potent and selective leishmania N-myristoyltransferase inhibitors. J Med Chem 57:8664–8670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivaldi C, Martin BR, Kieffer-Jaquinod S, Chapel A, Levade T, Garin J, Journet A (2012) Proteomic analysis of S-acylated proteins in human B cells reveals palmitoylation of the immune regulators CD20 and CD23. PLoS One 7:e37187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • James GL, Goldstein JL, Brown MS, Rawson TE, Somers TC, McDowell RS, Crowley CW, Lucas BK, Levinson AD, Marsters JC Jr (1993) Benzodiazepine peptidomimetics: potent inhibitors of Ras farnesylation in animal cells. Science 260:1937–1942

    Article  CAS  PubMed  Google Scholar 

  • Jennings BC, Nadolski MJ, Ling Y, Baker MB, Harrison ML, Deschenes RJ, Linder ME (2009) 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. J Lipid Res 50:233–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG (2007) Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 6:541–555

    Article  CAS  PubMed  Google Scholar 

  • Kumari B, Kumar R, Kumar M (2014) PalmPred: an SVM based palmitoylation prediction method using sequence profile information. PLoS One 9:e89246

    Article  PubMed Central  PubMed  Google Scholar 

  • Lai J, Linder ME (2013) Oligomerization of DHHC protein S-acyltransferases. J Biol Chem 288:22862–22870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lannuzel M, Lamothe M, Schambel P, Etievant C, Hill B, Perez M (2003) From pure FPP to mixed FPP and CAAX competitive inhibitors of farnesyl protein transferase. Bioorg Med Chem Lett 13:1459–1462

    Article  CAS  PubMed  Google Scholar 

  • Lawrence DS, Zilfou JT, Smith CD (1999) Structure-activity studies of cerulenin analogues as protein palmitoylation inhibitors. J Med Chem 42:4932–4941

    Article  CAS  PubMed  Google Scholar 

  • Levental I, Grzybek M, Simons K (2010) Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49:6305–6316

    Article  CAS  PubMed  Google Scholar 

  • Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, McMahon AP (2001) Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105:599–612

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, Li J, Tompkins C, Pferdekamper A, Steffy A, Cheng J, Kowal C, Phung V, Guo G, Wang Y, Graham MP, Flynn S, Brenner JC, Li C, Villarroel MC, Schultz PG, Wu X, McNamara P, Sellers WR, Petruzzelli L, Boral AL, Seidel HM, McLaughlin ME, Che J, Carey TE, Vanasse G, Harris JL (2013) Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA 110:20224–20229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lobell RB, Omer CA, Abrams MT, Bhimnathwala HG, Brucker MJ, Buser CA, Davide JP, deSolms SJ, Dinsmore CJ, Ellis-Hutchings MS, Kral AM, Liu D, Lumma WC, Machotka SV, Rands E, Williams TM, Graham SL, Hartman GD, Oliff AI, Heimbrook DC, Kohl NE (2001) Evaluation of farnesyl:protein transferase and geranyl–geranyl:protein transferase inhibitor combinations in preclinical models. Cancer Res 61:8758–8768

    CAS  PubMed  Google Scholar 

  • Low MG, Finean JB (1977) Non-lytic release of acetylcholinesterase from erythrocytes by a phosphatidylinositol-specific phospholipase C. FEBS Lett 82:143–146

    Article  CAS  PubMed  Google Scholar 

  • Low MG, Prasad AR (1988) A phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma. Proc Natl Acad Sci USA 85:980–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magee AI (1990) Lipid modification of proteins and its relevance to protein targeting. J Cell Sci 97(Pt 4):581–584

    CAS  PubMed  Google Scholar 

  • Martin BR, Cravatt BF (2009) Large-scale profiling of protein palmitoylation in mammalian cells. Nat Methods 6:135–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin BR, Wang C, Adibekian A, Tully SE, Cravatt BF (2012) Global profiling of dynamic protein palmitoylation. Nat Methods 9:84–89

    Article  CAS  Google Scholar 

  • Mayor S, Riezman H (2004) Sorting GPI-anchored proteins. Nat Rev Mol Cell Biol 5:110–120

    Article  CAS  PubMed  Google Scholar 

  • McLellan CA, Whitesell L, King OD, Lancaster AK, Mazitschek R, Lindquist S (2012) Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chem Biol 7:1520–1528

    Article  CAS  PubMed  Google Scholar 

  • Meder D, Simons K (2005) Cell biology. Ras on the roundabout. Science 307:1731–1733

    Article  CAS  PubMed  Google Scholar 

  • Merrick BA, Dhungana S, Williams JG, Aloor JJ, Peddada S, Tomer KB, Fessler MB (2011) Proteomic profiling of S-acylated macrophage proteins identifies a role for palmitoylation in mitochondrial targeting of phospholipid scramblase 3. Mol Cell Proteom 10(M110):006007

    Google Scholar 

  • Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ (2006) Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 47:1118–1127

    Article  CAS  PubMed  Google Scholar 

  • Morck C, Olsen L, Kurth C, Persson A, Storm NJ, Svensson E, Jansson JO, Hellqvist M, Enejder A, Faergeman NJ, Pilon M (2009) Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 106:18285–18290

    Article  PubMed Central  PubMed  Google Scholar 

  • Muller A, Kloppel C, Smith-Valentine M, Van Houten J, Simon M (2012) Selective and programmed cleavage of GPI-anchored proteins from the surface membrane by phospholipase C. Biochim Biophys Acta 1818:117–124

    Article  PubMed  Google Scholar 

  • Nomanbhoy TK, Erickson JW, Cerione RA (1999) Kinetics of Cdc42 membrane extraction by Rho-GDI monitored by real-time fluorescence resonance energy transfer. Biochemistry 38:1744–1750

    Article  CAS  PubMed  Google Scholar 

  • Ohno Y, Kashio A, Ogata R, Ishitomi A, Yamazaki Y, Kihara A (2012) Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system. Mol Biol Cell 23:4543–4551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Omura S (1976) The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriological Rev 40:681–697

    CAS  Google Scholar 

  • Patel DV, Schmidt RJ, Biller SA, Gordon EM, Robinson SS, Manne V (1995) Farnesyl diphosphate-based inhibitors of Ras farnesyl protein transferase. J Med Chem 38:2906–2921

    Article  CAS  PubMed  Google Scholar 

  • Petrova E, Rios-Esteves J, Ouerfelli O, Glickman JF, Resh MD (2013) Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling. Nat Chem Biol 9:247–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4:a008052

    Article  PubMed Central  PubMed  Google Scholar 

  • Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:255–259

    Article  CAS  PubMed  Google Scholar 

  • Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11:761–774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reiss Y, Goldstein JL, Seabra MC, Casey PJ, Brown MS (1990) Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell 62:81–88

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X (2008) CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21:639–644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren W, Jhala US, Du K (2013) Proteomic analysis of protein palmitoylation in adipocytes. Adipocyte 2:17–28

    Article  PubMed Central  PubMed  Google Scholar 

  • Resh MD (2012) Targeting protein lipidation in disease. Trends Mol Med 18:206–214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Resh MD (2013) Covalent lipid modifications of proteins. Curr Biol 23:R431–R435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rocks O, Peyker A, Kahms M, Verveer PJ, Koerner C, Lumbierres M, Kuhlmann J, Waldmann H, Wittinghofer A, Bastiaens PI (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752

    Article  CAS  PubMed  Google Scholar 

  • Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechlivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PI (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141:458–471

    Article  CAS  PubMed  Google Scholar 

  • Rucinski M, Ziolkowska A, Szyszka M, Hochol A, Malendowicz LK (2012) Evidence suggesting that ghrelin O-acyl transferase inhibitor acts at the hypothalamus to inhibit hypothalamo-pituitary-adrenocortical axis function in the rat. Peptides 35:149–159

    Article  CAS  PubMed  Google Scholar 

  • Salaun C, Greaves J, Chamberlain LH (2010) The intracellular dynamic of protein palmitoylation. J Cell Biol 191:1229–1238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sane KM, Mynderse M, Lalonde DT, Dean IS, Wojtkowiak JW, Fouad F, Borch RF, Reiners JJ Jr, Gibbs RA, Mattingly RR (2010) A novel geranyl–geranyl transferase inhibitor in combination with lovastatin inhibits proliferation and induces autophagy in STS-26T MPNST cells. J Pharmacol Exp Ther 333:23–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharom FJ, Lehto MT (2002) Glycosylphosphatidylinositol-anchored proteins: structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem Cell Biol 80:535–549

    Article  CAS  PubMed  Google Scholar 

  • Song SP, Hennig A, Schubert K, Markwart R, Schmidt P, Prior IA, Bohmer FD, Rubio I (2013) Ras palmitoylation is necessary for N-Ras activation and signal propagation in growth factor signalling. Biochem J 454:323–332

    Article  CAS  PubMed  Google Scholar 

  • Soyombo AA, Hofmann SL (1997) Molecular cloning and expression of palmitoyl-protein thioesterase 2 (PPT2), a homolog of lysosomal palmitoyl-protein thioesterase with a distinct substrate specificity. J Biol Chem 272:27456–27463

    Article  CAS  PubMed  Google Scholar 

  • Swarthout JT, Lobo S, Farh L, Croke MR, Greentree WK, Deschenes RJ, Linder ME (2005) DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J Biol Chem 280:31141–31148

    Article  CAS  PubMed  Google Scholar 

  • Takamune N, Hamada H, Misumi S, Shoji S (2002) Novel strategy for anti-HIV-1 action: selective cytotoxic effect of N-myristoyltransferase inhibitor on HIV-1-infected cells. FEBS Lett 527:138–142

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF (2004) Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci USA 101:517–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang JY, So PL, Epstein EH Jr (2007) Novel Hedgehog pathway targets against basal cell carcinoma. Toxicol Appl Pharmacol 224:257–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • von Lintig FC, Dreilinger AD, Varki NM, Wallace AM, Casteel DE, Boss GR (2000) Ras activation in human breast cancer. Breast Cancer Res Treat 62:51–62

    Article  Google Scholar 

  • Webb Y, Hermida-Matsumoto L, Resh MD (2000) Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J Biol Chem 275:261–270

    Article  CAS  PubMed  Google Scholar 

  • Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Qiao X, Fong LG, Young SG (2008) Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson-Gilford progeria syndrome mutation. Biochim Biophys Acta 1781:36–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yount JS, Moltedo B, Yang YY, Charron G, Moran TM, Lopez CB, Hang HC (2010) Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat Chem Biol 6:610–614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, DeRan M, Li X, Liao X, Fukata M, Wu X (2013) 2-Bromopalmitate analogues as activity-based probes to explore palmitoyl acyltransferases. J Am Chem Soc 135:7082–7085

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M, Hahn SA, Triola G, Wittinghofer A, Bastiaens PI, Waldmann H (2013) Small molecule inhibition of the KRAS-PDEdelta interaction impairs oncogenic KRAS signalling. Nature 497:638–642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cancer Prevention and Research Institute of Texas (CPRIT) New Investigator Recruitment Grant (R1215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Levental.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, L., Levental, I. Pharmacological Inhibition of Protein Lipidation. J Membrane Biol 248, 929–941 (2015). https://doi.org/10.1007/s00232-015-9835-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9835-4

Keywords

Navigation