Skip to main content
Log in

Salinity-Induced Noise in Membrane Potential of Characeae Chara australis: Effect of Exogenous Melatonin

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Salt sensitive Characeae Chara australis responds to 50 mM NaCl by a prompt appearance of noise in the trans-membrane potential difference (PD). The noise diminishes with time in saline and PD depolarization, leading to altered current–voltage characteristics that could be modeled with H+/OH channels. Beilby and Al Khazaaly (JMB 230:21–34, 2009) suggested that the noise might arise from cooperative transient opening of H+/OH channels. Presoaking cells in 10 μM melatonin over 24 h abolished the noise in some cells, postponed its appearance in others or changed its characteristics. As melatonin is a very effective antioxidant, we postulated opening of H+/OH channels by reactive oxygen species (ROS). Measurement of ROS using dihydrodichlorofluorescein diacetate confirmed substantial reduction in ROS production in melatonin-treated cells in saline and sorbitol media. However, ROS concentration decreased as a function of time in saline medium. Possible schemes for activation of H+/OH channels under salinity stress are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al Khazaaly S (2011) Modelling electrophysiological responses of Characeae to salt and osmotic stress. Ph. D. thesis, School of Physics, The University of NSW, Sydney, Australia

  • Al Khazaaly S, Beilby MJ (2012) Zinc ion blocks H+/OH channels in Chara australis. Plant Cell Environ 35:1380–1392

    Article  CAS  PubMed  Google Scholar 

  • Al Khazaaly S, Walker NA, Beilby MJ, Shepherd VA (2009) Membrane potential fluctuations in Chara australis: a characteristic signature of high external sodium. Eur Biophys J 39:167–174

    Article  CAS  PubMed  Google Scholar 

  • Amirjani MR (2010) Effect of NaCl on some physiological parameters of rice. Eur J Biol Sci 3:6–16

    Google Scholar 

  • Beilby MJ, Al Khazaaly S (2009) The role of H+/OH channels in salt stress response of Chara australis. J Membr Biol 230:21–34

    Article  CAS  PubMed  Google Scholar 

  • Beilby MJ, Bisson MA (2012) pH banding in charophyte algae. In: Volkov A (ed) Plant electrophysiology: methods and cell electrophysiology. Springer Verlag, Heidelberg, pp 247–271

    Chapter  Google Scholar 

  • Beilby MJ, Casanova MT (2013) The physiology of Characean cells. Springer, New York

    Google Scholar 

  • Bisson MA (1984) Calcium effects on electrogenic pump and passive permeability of the plasma membrane of C. corallina. J Membr Biol 81:59–67

    Article  CAS  PubMed  Google Scholar 

  • Bisson MA, Walker NA (1980) The Chara plasmalemma at high pH. electrical measurements show rapid specific passive uniport of H+ or OH. J Membr Biol 56:1–7

    Article  CAS  Google Scholar 

  • Bisson MA, Walker NA (1981) The hyperpolarisation of the Chara membrane at high pH: effects of external potassium, internal pH, and DCCD. J Exp Bot 32:951–971

    Article  Google Scholar 

  • Boccalandro HE, Gonzalez CV, Wunderlin DA, Silva MF (2011) Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J Pineal Res 51:226–232

    Article  CAS  PubMed  Google Scholar 

  • Brown PN, Turi CE, Shipley PR, Murch SJ (2012) Phytochemical discovery in large cranberry (Vaccinium macrocarpon Ait.) and small cranberry (Vaccinium oxycoccus L. and Vaccinium vitis-idaea L.) in British Columbia. Planta Med 78:1–11

    Article  Google Scholar 

  • Brzezinski A (1997) Melatonin in humans. N Engl J Med 336:186–195

    Article  CAS  PubMed  Google Scholar 

  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and high-performance liquid chromatograph-mass spectrometry. J Pineal Res 18:28–31

    Article  CAS  PubMed  Google Scholar 

  • Eremin A, Bulychev A, Hauser MJB (2013) Cyclosis-mediated transfer of H2O2 elicited by localized illumination of Chara cells and its relevance to the formation of pH bands. Protoplasma 250:1339–1349

    Article  CAS  PubMed  Google Scholar 

  • Feijo J, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483–496

  • Hattori A, Migitaka H, Masayake I, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plant seed, its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Int J Biochem Mol Biol 35:627–634

    CAS  Google Scholar 

  • Hope AB, Walker NA (1975) The physiology of giant algal cells. Cambridge university press, London

    Google Scholar 

  • Lazar D, Murch SJ, Beilby MJ, Al Khazaaly S (2013) Exogenous melatonin affects photosynthesis in Characeae Chara australis. Plant Signal Behav 8(3):23279

    Article  Google Scholar 

  • Li J-Y, Jiang A-L, Zhang W (2007) Salt stress-induced programmed cell death in rice root tip cells. J Integr Plant Biol 49:481–486

    Article  CAS  Google Scholar 

  • McCourt RM, Delwiche CF, Karol KG (2004) Charophyte algae and land plant origins. Trends Ecol Evol 19:661–666

    Article  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Saxena PK (2002) Melatonin: a potential regulator of plant growth and development. Dev Biol 38:531–536

    CAS  Google Scholar 

  • Murch SJ, Simmons CB, Saxena PK (1997) Melatonin in feverfew and other medicinal plants. Lancet 350:1598–1599

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Krishnara JS, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704

    Article  CAS  Google Scholar 

  • Murch SJ, Campbell SSB, Saxena PK (2001) The role of serotonin and melatonin in plant morphogenesis: regulation of auxin- induced root organogenesis in in vitro cultured explants of St. John’s wort (Hypericum perforatum L.). In Vitro Cell Dev Biol 37:786–793

    Article  CAS  Google Scholar 

  • Murch SJ, Ali AR, Cao J, Saxena PK (2009) Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res 47:277–283

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Hall BA, Le CH, Saxena PK (2010) Changes in the levels of indoleamine phytochemicals in véraison and ripening of wine grapes. J Pineal Res 49:95–100

    CAS  PubMed  Google Scholar 

  • Pelagio-Flores R, Munoz-Parra E, Ortiz-Castro R, Lopez-Bucio J (2012) Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res 53:279–288

    Article  CAS  PubMed  Google Scholar 

  • Poggeler B, Balzer I, Hardeland R, Lerchl A (2001) Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften 78:268–269

    Article  Google Scholar 

  • Posmyk M, Janas K (2009) Melatonin in plants. Acta Physiol Plant 31:1–11

    Article  CAS  Google Scholar 

  • Prins HBA, Snel JFH, Helder RJ, Zanstra PE (1980) Photosynthetic HCO3 - utilization and OH- excretion in aquatic angiosperms. Plant Physiol 66:818–822

  • Raven JA (1991) Terrestrial rhizophytes and H+ currents circulating over at least a millimeter: an obligate relationship? New Phytol 117:177–185

  • Shepherd VA, Beilby MJ, Al Khazaaly S, Shimmen T (2008) Mechano-perception in Chara cells: the influence of salinity and calcium on touch-activated receptor potentials, action potentials and ion transport. Plant Cell Environ 31:1575–1591

    Article  CAS  PubMed  Google Scholar 

  • Shimmen T (2007) The sliding theory of cytoplasmic streaming: fifty years of progress. J Plant Res 120:31–43

    Article  CAS  PubMed  Google Scholar 

  • Tan D-X, Manchester LC, Di Mascio P, Martinez GR, Prado FM, Reiter RJ (2007a) Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J 21:1724–1729

    Article  CAS  PubMed  Google Scholar 

  • Tan D-X, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007b) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42

    Article  CAS  PubMed  Google Scholar 

  • Tan D-X, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral SA, Reichle RA (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63:577–597

    Article  CAS  PubMed  Google Scholar 

  • Tan D-X, Manchester LC, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54:127–138

    Article  CAS  PubMed  Google Scholar 

  • Timme RE, Bachvaroff TR, Delwiche ChF (2012) Broad phylogenomic sampling and the sister lineage of land plants. PloS ONE 7:29696

    Article  Google Scholar 

  • Tyerman S, Beilby MJ, Whittington J, Juswono U, Newman I, Shabala S (2001) Oscillations in proton transport revealed from simultaneous measurements of net current and net proton fluxes from isolated root protoplasts: MIFE meets patch-clamp. Aust J Plant Physiol 28:591–604

  • Tyerman S, Skerrett M, Garrill A, Findlay GP, Leigh RA (1997) Pathways for the permeation of Na+, and Cl- into protoplasts derived from the cortex of wheat roots. J Exp Bot 48:459–480

  • Van Tassel DL, Roberts N, Lewy A, O’Neil SD (2001) Melatonin in plant organs. J Pineal Res 31:8–15

    Article  PubMed  Google Scholar 

  • Wang P, Yin L, Liang D, Li Ch, Ma F, Yue Z (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione. J Pineal Res 53:11–20

    Article  PubMed  Google Scholar 

  • Wodniok S, Brinkmann H, Glockner G, Heidel AJ, Philippe H, Melkonian M, Becker B (2011) Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol 11:104–114

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolf K, Kolar J, Witters E, van Dongen W, van Onckelen H, Machackova I (2001) Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. J Plant Physiol 158:1491–1493

    Article  CAS  Google Scholar 

  • Wu L -J (2014) Voltage-gated proton channel HV1 in microglia. The Neuroscientist online first http://nro.sagepub.com/content/early/2014/01/23/1073858413519864

  • Zhang N, Zhao B, Zhang H-J, Weeda S, Yang C, Yang Z-C, Ren S, Guo Y-D (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54:15–23

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank P. Ranganathan and G. Craigie for assistance with the ROS experiments.

Conflict of interest

Authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary J. Beilby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beilby, M.J., Al Khazaaly, S. & Bisson, M.A. Salinity-Induced Noise in Membrane Potential of Characeae Chara australis: Effect of Exogenous Melatonin. J Membrane Biol 248, 93–102 (2015). https://doi.org/10.1007/s00232-014-9746-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9746-9

Keywords

Navigation