Skip to main content
Log in

The sliding theory of cytoplasmic streaming: fifty years of progress

  • Current Topics in Plant Research
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Fifty years ago, an important paper appeared in Botanical Magazine Tokyo. Kamiya and Kuroda proposed a sliding theory for the mechanism of cytoplasmic streaming. This pioneering study laid the basis for elucidation of the molecular mechanism of cytoplasmic streaming—the motive force is generated by the sliding of myosin XI associated with organelles along actin filaments, using the hydrolysis energy of ATP. The role of the actin–myosin system in various plant cell functions is becoming evident. The present article reviews progress in studies on cytoplasmic streaming over the past 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams RJ, Pollard TD (1986) Nature 322:754–756

    Google Scholar 

  • Albanesi JP, Fujisaki H, Hammer III JA, Korn ED, Jones R, Sheetz MP (1985) J Biol Chem 260:8649–8652

  • Allwood EG, Anthony RG, Smertenko AP, Reichelt S, Drobak BK Doonan JH, Weeds AG Hussey PJ (2002) Plant Cell 14:2915–2927

    Google Scholar 

  • Awata J, Saitoh K, Shimada K, Kasiyama T, Yamamoto K (2001) Plant Cell Physiol 42:828–834

    Google Scholar 

  • Awata J, Kashiyama T, Ito K, Yamamoto K (2003) J Mol Biol 326:659–663

    Google Scholar 

  • Barry WH (1968) J Cell Physiol 72:153–160

    Google Scholar 

  • Bradley MO (1973) J Cell Sci 12:327–343

    Google Scholar 

  • Brewbaker JL, Kwack BH (1963) Am J Bot 50:859–868

    Google Scholar 

  • Chen JCW, Kamiya N (1975) Cell Struct Funct 1:1–9

    Google Scholar 

  • Chen JCW, Kamiya N (1981) Cell Struct Funct 6:201–207

    Google Scholar 

  • Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK Wu H-M, Cheung AY (2002) Plant Cell 14:2175–2190

    Google Scholar 

  • Chen CY-H, Cheung AY, Wu H-M (2003) Plant Cell 15:237–249

    Google Scholar 

  • Collings DA, Wasteneys GO, Williamson RE (1996) Protoplasma 191:178–190

    Google Scholar 

  • Corti B (1774) Osservazioni microscopiche sulla tremella e sulla circolazione del fluido in una pianta acquajuola. Lucca

  • Dong X-J, Nagai R, Takagi S (1998) Plant Cell Physiol 39:1299–1306

    Google Scholar 

  • Doree M, Picard A (1980) Experientia 36:1291–1292

    Google Scholar 

  • Ewart AJ (1903) On the physics and physiology of protoplasmic streaming in plants. Oxford

  • Fan X, Hou J, Chen X, Chaudhry F, Stainger CJ, Ren H (2004) Plant Physiol 136:3979–3989

    Google Scholar 

  • Fehrenbacher KL, Boldogh IR, Pon LA (2003) Trends Cell Biol 13:472–477

    Google Scholar 

  • Franke WW, Herth W, van der Woude WJ, Morre DJ (1972) Planta 105:317–341

    Google Scholar 

  • Funaki K, Nagata A, Akimoto Y, Shimada K, Ito K, Yamamoto K (2004) Plant Cell Physiol 45:1342–1345

    Google Scholar 

  • Gross P, Julius D, Schmelzer E, Hahlbrock K (1993) EMBO J 12:1735–1744

    Google Scholar 

  • Gu Y, Vernoud V, Fu Y Yang Z (2003) J Exp Bot 54:93–101

  • Hamada S, Sekimoto H, Tanabe Y, Tsuchikane Y, Ito M (2006) J Plant Res 119:105–113

    Google Scholar 

  • Harada A, Okazaki Y, Takagi S (2002a) Planta 214:863–869

  • Harada A, Fukuhara, Takagi S (2002b) Planta 214:870–876

  • Hashimoto K, Igarashi H, Mano S, Nishimura M, Shimmen T, Yokota E (2005) Plant Cell Physiol 46:782–789

    Google Scholar 

  • Haupt W (1982) Ann Rev Plant Physiol 33:205–233

    Google Scholar 

  • Hayama T, Shimmen T, Tazawa M (1979) Protoplasma 99:305–321

    Google Scholar 

  • Hayama T, Tazawa M (1980) Protoplasma 102:1–9

    Google Scholar 

  • Hayashi T, Harada A, Sakai T, Takagi S (2006) Plant Cell Environ 29:661–672

    Google Scholar 

  • Hayashi T, Takagi S (2003) Plant Cell Physiol 44:1027–1036

    Google Scholar 

  • Herth W (1978) Protoplasma 96:275–282

    Google Scholar 

  • Hill SE (1941) Biol Bull 81:296

  • Holweg C, Nick P (2004) Proc Natl Acad Sci USA 101:10488–10493

    Google Scholar 

  • Huang S, Blanchoin L, Chaudhry F, Franklin-Tong VE, Staiger CJ (2004) J Biol Chem 279:23364–23375

    Google Scholar 

  • Huxley AF, Niedergerke R (1954) Nature 173:971–973

    Google Scholar 

  • Huxley HE, Hanson J (1954) Nature 173:973–976

    Google Scholar 

  • Ishigami M, Nagai R (1980) Cell Struct Funct 5:13–20

    Google Scholar 

  • Ito K, Kashiyama T, Shimada K, Yamaguchi A, Awata J, Hachikubu Y, Manstein DJ, Yamamoto K (2003) Biochem Biophys Res Commun 312:958–964

    Google Scholar 

  • Jedd G, Chua NH (2002) Plant Cell Physiol 43:384–392

    Google Scholar 

  • Kachar B, Reese TS (1988) J Cell Biol 106:1545–1552

    Google Scholar 

  • Kadota A, Sato Y, Wada M (2000) Planta 210:932–937

    Google Scholar 

  • Kamitsubo E (1966) Proc Jpn Acad 42:640–643

    Google Scholar 

  • Kamitsubo E (1972) Exp Cell Res 74:613–616

    Google Scholar 

  • Kamitsubo E (1981) Protoplasma 109:3–12

    Google Scholar 

  • Kamiya N, Kuroda K (1956) Bot Mag Tokyo 69:544–554

    Google Scholar 

  • Karcher RL, Deacon SW, Gelfand VI (2002) Trends Cell Biol 12:21–27

    Google Scholar 

  • Kashiyama T, Kimura N, Mimura T, Yamamoto K (2000) J Biochem 127:1065–1070

    Google Scholar 

  • Kashiyama T, Ito K, Yamamoto K (2001) J Mol Biol 311:461–466

    Google Scholar 

  • Kasahara M, Kagawa T, Sato Y, Kiyosue TD, Wada M. (2004) Plant Physiol 135:1388–1397

    Google Scholar 

  • Kawai H, Kanegae T, Christensen S, Kiyosue T, Sato Y, Imaizumi T, Kadota, Wada M (2003) Nature 421:287–290

  • Kersey YM, Wessells NK (1976) J Cell Biol 68:264–275

    Google Scholar 

  • Kersey YM, Hepler PK, Palevitz BA, Wessells NK (1976) Proc Natl Acad Sci USA 73:165–167

    Google Scholar 

  • Kikuyama M, Tazawa M (1982) Protoplasma 113:241–243

    Google Scholar 

  • Kikuyama M, Shimada K, Hiramoto Y (1993) Protoplasma 174:142–146

    Google Scholar 

  • Kimura Y, Toyoshima N, Hirakawa N, Okamoto K, Ishijima A (2003) J Mol Biol 328:939–950

    Google Scholar 

  • Kishimoto U, Akabori H (1959) J Gen Physiol 42:1167–1183

    Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kuhoh H (1997a) Plant J 11:525–537

  • Kobayashi Y, Yamada M, Kobayshi I, Kunoh H (1997b) Plant Cell Physiol 38:725–733

  • Kohno T, Okagaki T, Kohama K, Shimmen T (1991) Protoplasma 161:75–77

    Google Scholar 

  • Kohno T, Ishikawa R, Nagata T, Kohama K, Shimmen T (1992) Protoplasma 170:77–85

    Google Scholar 

  • Kohama K, Shimmen T (1985) Protoplasma 129:88–91

    Google Scholar 

  • Kohno T, Shimmen T (1988a) J Cell Biol 106:1539–1543

  • Kohno T, Shimmen T (1988b) J Cell Sci 91:501–509

  • Koop H-U, Kiermayer O (1980) Protoplasma 102:295–306

    Google Scholar 

  • Kron SJ, Spudich JA (1986) Proc Natl Acad Sci USA 83:6272–6276

    Google Scholar 

  • Kunoh H, Aist JR, Hayashimoto A (1985) Physiol Plant Pathol 26:199–207

    Google Scholar 

  • Kuroda K (1983) Proc Jpn Acad 59 ser B:126–130

  • Kuroda K, Kamiya N (1975) Proc Jpn Acad 51 ser B:774–777

  • Kuroda K, Manabe E (1983) Proc Jpn Acad 59 ser B:131–134

  • Lancelle SA, Hepler PK (1992) Protoplasma 167:215–230

    Google Scholar 

  • Lancelle SA, Cresti M, Hepler PK (1987) Protoplasma 140:141–150

    Google Scholar 

  • Lancelle SA. Cresti M, Heper PK (1997) Protoplasma 196:21–33

    Google Scholar 

  • Maekawa T, Tsutsui I, Nagai R (1986) Plant Cell Physiol 27:837–851

    Google Scholar 

  • Makita N, Shihira-Ishikawa I (1997) Protoplasma 197:86–95

    Google Scholar 

  • Maruta H, Korn ED (1977) J Biol Chem 252:6501–6509

    Google Scholar 

  • Mascarenhas JP, Lafountain J (1972) Tissue Cell 4:11–14

    Google Scholar 

  • Masuda Y, Takagi S, Nagai R (1991) Protoplasma 162:151–159

    Google Scholar 

  • McCurdy DW, Harmon AC (1992a) Planta 188:54–61

  • McCurdy DW, Harmon AC (1992b) Protoplasma 171:85–88

  • McKenna ST, Vidali L, Hepler PK (2004) Planta 218:906–915

    Google Scholar 

  • Meagher RB, McKinny EC, Vitale AV (1999) Trends Genet 15:278–284

    Google Scholar 

  • Menzel D, Elsner-Menzel C (1989) Bot Acta 102:241–248

    Google Scholar 

  • Miller AJ, Sanders D (1987) Nature 326:397–399

    Google Scholar 

  • Miller DD, Callaham DA, Gross DJ, Hepler P (1992) J Cell Sci 101:7–12

    Google Scholar 

  • Miller DD, Lancelle SA, Hepler PK (1996) Protoplasma 195:123–132

    Google Scholar 

  • Mizukami M, Wada S (1983) Protoplasma 114:154–162

    Google Scholar 

  • Morimatsu M, Nakamura A, Sumiyoshi H, Sakabe N, Taniguchi H, Kohama K, Higashi-Fujime S (2000) Biochem Biophys Res Commun 270:147–152

    Google Scholar 

  • Morimatsu M, Hasegawa S, Higashi-Fujime S (2002) Cell Motil Cytoskel 53:66–76

    Google Scholar 

  • Nagai R, Hayama T (1979) J Cell Sci 36:121–136

    Google Scholar 

  • Nagai R, Rebhun LI (1966) J Ultrastruct Res 14:571–589

    Google Scholar 

  • Nakayasu T, Yokota E, Shimmen T (1998) Biochem Biophys Res Commun 249:61–65

    Google Scholar 

  • Nishimura T, Yokota E, Wada T, Shimmen T, Okada K. (2003) Plant Cell Physiol 44:1131–1140

    Google Scholar 

  • Nobling R, Reiss H-D (1987) Protoplasma 139:20–24

    Google Scholar 

  • Okazaki Y, Tazawa M (1986) Plant Cell Environ 9:491–494

    Google Scholar 

  • Okazaki Y, Shimmen T, Tazawa M (1984) Plant Cell Physiol 25:573–581

    Google Scholar 

  • Okazaki Y, Yoshimoto Y, Hiramoto Y, Tazawa M (1987) Protoplasma 140:67–71

    Google Scholar 

  • Palevitz BA, Hepler PK (1975) J Cell Biol 65:29–38

    Google Scholar 

  • Palevitz BA, Ash JF, Hepler PK (1974) Proc Natl Acad Sci USA 71:363–366

    Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK (1994) Plant Cell 6:1815–1828

    Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G, Hepler PK (1996) Dev Biol 174:160–173

    Google Scholar 

  • Plieth C, Hansen U-P (1992) Planta 188:332–339

    Google Scholar 

  • Pollard TD, Korn ED (1973a) J Biol Chem 248:4682–4690

  • Pollard TD, Korn ED (1973b) J Biol Chem 248:4691–4697

  • Reichelt S, Kendrick-Jones J (2000) In actin: dynamic framework for multiple plant cell functions. Staiger CJ, Balujska F, Volkman D, Barlow PW (eds) Kluwer, Dordrecht, pp 29–44

  • Reiss H-D, Nobling R (1986) Protoplasma 131:244–246

    Google Scholar 

  • Romagnoli S, Cai G, Cresti M (2003) Plant Cell 15:251–269

    Google Scholar 

  • Ryu J-H, Takagi S, Nagai R (1995) J Cell Sci 108:1531–1539

    Google Scholar 

  • Sato Y, Kadota A, Wada M (1999) Plant Physiol 121:37–44

    Google Scholar 

  • Sato Y, Wada M, Kadota A (2000) J Cell Sci 114:269–279

    Google Scholar 

  • Sato Y, Wada M, Kadota A (2001) Plant Physiol 127:497–504

    Google Scholar 

  • Sato Y, Wada M, Kadota A (2003) Planta 216:772–777

    Google Scholar 

  • Seitz K (1967) Z Pflanzenphysiol 6:246–261

    Google Scholar 

  • Seki M, Awata J, Shimada K, Kashiyama T, Ito K, Yamamoto K (2003) Plant Cell Physiol 44:201–205

    Google Scholar 

  • Seki M, Kashiyama T, Hachikubu Y, Ito K, Yamamoto K (2004) J Mol Biol 344:311–315

    Google Scholar 

  • Sellers JR (2000) Biochim Biophys Acta 1496:3–22

    Google Scholar 

  • Sellers JR, Spudich JA, Sheetz MP (1985) J Cell Biol 101:1897–1902

    Google Scholar 

  • Sheetz MP, Spudich JA (1983) Nature 303:31–35

    Google Scholar 

  • Shimmen T (1978) Cell Struct Funct 3:113–121

    Google Scholar 

  • Shimmen T (1988a) Protoplasma suppl 1:3–9

    Google Scholar 

  • Shimmen T (1988b) Bot Mag Tokyo 101:533–544

    Google Scholar 

  • Shimmen T (1996) Plant Cell Physiol 37:591–597

    Google Scholar 

  • Shimmen T, Tazawa M (1982) Protoplasma 113:127–131

    Google Scholar 

  • Shimmen T, Tazawa M (1983) Protoplasma 115:18–24

    Google Scholar 

  • Shimmen T, Yano M (1984) Protoplasma 121:132–137

    Google Scholar 

  • Shimmen T, Yano M (1986) Protoplasma 132:129–136

    Google Scholar 

  • Shimmen T, Yokota (2004) Curr Opinion Cell Biol 16:159–167

  • Shimmen T, Mimura T, Kikuyama M, Tazawa M (1994) Cell Struct Funct 19:263–278

    Google Scholar 

  • Shimmen T, Xu Y-L, Kohno T (1990) Protoplasma 158:39–44

    Google Scholar 

  • Sibaoka T, Oda K (1956) Sci Rep Tohoku Univ IV Biol 22:157–166

    Google Scholar 

  • Staiger CJ, Schliwa M (1987) Protoplasma 141:1–12

    Google Scholar 

  • Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Michison TJ (2003) Science 299:1743–1747

    Google Scholar 

  • Takagi S, Nagai R (1983) J Cell Sci 62:385–405

    Google Scholar 

  • Takagi S, Nagai R (1985) Plant Cell Physiol 26:941–951

    Google Scholar 

  • Takagi S, Nagai R (1986) Plant Cell Physiol 27:953–959

    Google Scholar 

  • Takagi S, Nagai R (1988) Plant Physiol 88:228–232

    Google Scholar 

  • Takagi S, Yamamoto K, Furuya M, Nagai R (1990) Plant Physiol 94:1702–1708

    Google Scholar 

  • Takagi S, Yokota E, Shimmen T, Nagai R (1995) Plant Cell Physiol 36 (suppl. s132)

  • Takemoto D, Jones DA, Hardham AR (2003) Plant J 33:775–792

    Google Scholar 

  • Tazawa M (1964) Plant Cell Physiol 5:33–43

    Google Scholar 

  • Tazawa M, Kishimoto U (1968) Plant Cell Physiol 9:361–368

    Google Scholar 

  • Tazawa M, Shimmen T (2001) Aust J Plant Physiol 28:523–539

    Google Scholar 

  • Tazawa M, Kikuyama M, Shimmen T (1976) Cell Struct Funct 1:165–176

    Google Scholar 

  • Tiwari SC, Polito VS (1988) Protoplasma 147:100–112

    Google Scholar 

  • Tlalka M, Gabrys H (1993) Planta 189:491–498

    Google Scholar 

  • Tominaga Y, Tazawa M (1981) Protoplasma 109:103–111

    Google Scholar 

  • Tominaga Y, Shimmen T, Tazawa M (1983) Protoplasma 116:75–77

    Google Scholar 

  • Tominaga Y, Wayne R, Tung HYL, Tazawa M (1987) Protoplasma 136:161–169

    Google Scholar 

  • Tominaga M, Morita K, Sonobe S, Yokota E, Shimmen T (1997) Protoplasma 199:83–92

    Google Scholar 

  • Tominaga M, Yokota E, Sonobe S, Shimmen T (2000) Protoplasama 213:46–54

    Google Scholar 

  • Tominaga M, Kojima H, Yokota E, Orii H, Nakamori R, Katayama E, Anson M, Shimmen T, Oiwa K (2003) EMBO J 22:1263–1272

    Google Scholar 

  • Vale RD, Szent-Gyorgyi AG, Sheetz MP (1984) Proc Natl Acad Sci USA 81:6775–6778

    Google Scholar 

  • Vidali L, Yokota E, Cheung AY, Shimmen T, Hepler PK (1999) Protoplasma 209:283–291

    Google Scholar 

  • Williamson RE (1972) J Cell Sci 10:811–819

    Google Scholar 

  • Williamson RE (1974) Nature 248:801–802

    Google Scholar 

  • Williamson RE (1975) J Cell Sci 17:655–668

    Google Scholar 

  • Williamson RE, Ashley CC (1982) Nature 296:647–651

    Google Scholar 

  • Woods CM, Polito VS, Reid MS (1984) Protoplasma 121:17–24

    Google Scholar 

  • Yamamoto K, Kikuyama M, Sutoh-Yamamoto N, Kamitsubo E (1994) Proc Jpn Acad 70 Ser. B:175–180

  • Yamamoto K, Kikuyama M, Sutoh-Yamamoto N, Kamitsubo E, Katayama E (1995) J Mol Biol 254:109–112

    Google Scholar 

  • Yamamoto K, Shimada K, Ito K, Hamada S, Ishijima A, Tsuchiya T, Tazawa M (2006) Plant Cell Physiol 47:1427–1431

    Google Scholar 

  • Yanagida T, Nakase M, Nishiyama K, Oosawa F (1984) Nature 307:58–60

    Google Scholar 

  • Yatsuhashi H, Kadota A, Wada M (1985) Planta 165:43–50

    Google Scholar 

  • Yokota E, Shimmen T (1994) Protoplasma 177:153–162

    Google Scholar 

  • Yokota E, McDonald AR, Liu B, Shimmen T, Palevitz BA (1995a) Protoplasma 185:178–187

  • Yokota E, Mimura T, Shimmen T (1995b) Plant Cell Physiol 36:1541–1547

  • Yokota E, Takahara K, Shimmen T (1998) Plant Physiol 116:1421–1429

    Google Scholar 

  • Yokota E, Muto S, Shimmen T. (1999a) Plant Physiol 119:231–239

  • Yokota E, Yukawa C, Muto S, Sonobe S, Shimmen T (1999b) Plant Physiol 121:525–534

  • Yokota E, Muto S, Shimmen T (2000) Plant Physiol 123:645–654

    Google Scholar 

  • Yokota E, Vidali L, Tominaga M, Tahara H, Orii H, Morizane Y, Hepler PK, Shimmen T (2003) Plant Cell Physiol 44:1088–1099

    Google Scholar 

  • Yokota E, Tominaga M, Mabuchi I, Tsuji Y. Staiger CJ, Oiwa K, Shimmen T (2005) Plant Cell Physiol 46:1690–1703

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Shimmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimmen, T. The sliding theory of cytoplasmic streaming: fifty years of progress. J Plant Res 120, 31–43 (2007). https://doi.org/10.1007/s10265-006-0061-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-006-0061-0

Keywords

Navigation