Skip to main content

Advertisement

Log in

The Effect of Glutathione Treatment on the Biochemical and Immunohistochemical Profile in Streptozotocin-Induced Diabetic Rats

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

This study investigated the possible role of glutathione (GSH) in diabetic complications and its biochemical safety in experimental diabetic rats. Serum biochemical parameters and the histology of the pancreas were investigated. Seven rats were separated as controls. To create the diabetes in rats, 45 mg/kg single-dose streptozotocin (STZ) was administered i.p. The treatment was continued for 1 month. STZ was administered to the diabetes + GSH group, then reduced GSH, dissolved in isotonic salt solution (200 mg/kg), was applied i.p. two times a week. The GSH group received i.p. GSH. Serum biochemical parameters were determined by autoanalyzer. Immunohistochemical procedures were used to determine the percentage of the insulin-immunoreactive β-cell area in the islets of Langerhans. The biochemical parameters changed to different degrees or did not change. Pancreatic cells of the control and GSH groups were healthy, but in the diabetic and GSH-treated diabetic groups we found damage in different numbers. The results from these analyses show that GSH supplementation can exert beneficial effects on pancreatic cells in STZ-induced diabetic rats and can safely be used for therapy in and protection from diabetes and complications of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abo-Salem OM, El-Edel RH, Harisa GE, El-Halawany N, Ghonaim MM (2009) Experimental diabetic nephropathy can be prevented by propolis: effect on metabolic disturbances and renal oxidative parameters. Pak J Pharm Sci 22(2):205–210

    PubMed  Google Scholar 

  • Abou-Seif MA, Youssef A (2004) Evaluation of some biochemical changes in diabetic patients. Clin Chim Acta 346(2):161–170

    Article  PubMed  CAS  Google Scholar 

  • ADA (American Diabetes Association) (2011) Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1):62–69

    Article  Google Scholar 

  • Aw TY, Wierzbicka G, Jones DP (1991) Oral glutathione increases tissue glutathione in vivo. Chem Biol Interact 80(1):89–97

    Article  PubMed  CAS  Google Scholar 

  • Borodaco A (2007) Classification and diagnosis of diabetes. Terapia 15:6–11

    Google Scholar 

  • Bourdon E, Loreau N, Blache D (1999) Glucose and free radicals impair the antioxidant properties of serum albumin. FASEB J 13:233–244

    PubMed  CAS  Google Scholar 

  • Bravenboer B, Kappelle AC, Hamers FPT, van Buren T, Erkelens DW, Gispen WH (1992) Potential use of glutathione for the prevention and treatment of diabetic neuropathy in the streptozotocin-induced diabetic rat. Diabetologia 35:813–817

    Article  PubMed  CAS  Google Scholar 

  • Cameron NE, Cotter MA (1999) Effects of antioxidants on nerve and vascular dysfunction in experimental diabetes. Diabetes Res Clin Pract 45(2–3):137–146

    Article  PubMed  CAS  Google Scholar 

  • Chen TS, Richie JP, Nagasawa HT, Lang CA (2000) Glutathione monoethyl ester protects against glutathione deficiencies due to aging and acetaminophen in mice. Mech Ageing Dev 120(1–3):127–139

    Article  PubMed  CAS  Google Scholar 

  • Damasceno DC, Volpato GT, de Mattos Paranhos Calderon I, Cunha Rudge MV (2002) Oxidative stress and diabetes in pregnant rats. Anim Reprod Sci 72(3–4):235–244

    Article  PubMed  CAS  Google Scholar 

  • De Mattia G, Bravi MC, Laurenti O, Cassone-Faldetta M, Armiento A, Ferri C, Balsano F (1998) Influence of reduced glutathione infusion on glucose metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism 47(8):993–997

    Article  PubMed  Google Scholar 

  • Eidi A, Eidi M, Esmaeili E (2006) Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 13(9–10):624–629

    Article  PubMed  CAS  Google Scholar 

  • El-Demerdash FM, Yousef MI, El-Naga NI (2005) Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food Chem Toxicol 43(1):57–63

    Article  PubMed  CAS  Google Scholar 

  • Fadillioglu E, Kurcer Z, Parlakpinar H, Iraz M, Gursu C (2008) Melatonin treatment against remote organ injury induced by renal ischemia reperfusion injury in diabetes mellitus. Arch Pharm Res 31(6):705–712

    Article  PubMed  CAS  Google Scholar 

  • Fernandes AA, Novelli EL, Okoshi K, Okoshi MP, Di Muzio BP, Guimarães JF, Fernandes JA (2010) Influence of rutin treatment on biochemical alterations in experimental diabetes. Biomed Pharmacother 64(3):214–219

    Article  PubMed  Google Scholar 

  • Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI (2007) The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 113(4–5):234–258

    Article  PubMed  CAS  Google Scholar 

  • He FJ, MacGregor GA (2008) Beneficial effects of potassium on human health. Physiol Plant 133(4):725–735

    Article  PubMed  CAS  Google Scholar 

  • Hu ML (1994) Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol 233:381–385

    Google Scholar 

  • Kanter M, Uysal H, Karaca T, Ozdemir-Sagmanligil H (2006) Depression of glucose levels and partial restoration of pancreatic β-cell damage by melatonin in streptozotocin-induced diabetic rats. Arch Toxicol 80:362–369

    Article  PubMed  CAS  Google Scholar 

  • Karaca T, Yörük M, Yörük İH, Uslu S (2010) Effects of extract of green tea and ginseng on pancreatic beta cells and levels of serum glucose, insulin, cholesterol and triglycerides in rats with experimentally streptozotocin-induced diabetes: a histochemical and immunohistochemical study. J Anim Vet Adv 9(1):102–107

    Article  Google Scholar 

  • Karasu Ç (1999) Increased activity of H2O2 in aorta isolated from chronically streptozotocin diabetic rats: effects of antioxidant enzymes and enzyme inhibitors. Free Radic Biol Med 27:16–27

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Sanders RA, Snyder AC, Eells JT, Henshel DS, Watkins JB 3rd (2010) Effects of low-level light therapy on streptozotocin-induced diabetic kidney. J Photochem Photobiol B 99(2):105–110

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Li J, Zeng Z, Liu M, Wang M (2008) The antidiabetic effects of cysteinyl metformin, a newly synthesized agent, in alloxan- and streptozocin-induced diabetic rats. Chem Biol Interact 173(1):68–75

    Article  PubMed  CAS  Google Scholar 

  • Loven D, Schedl H, Wilson H, Daabees TT, Stegink LD, Diekus M, Oberley L (1986) Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozocin-induced diabetes. Diabetes 35(5):503–507

    Article  PubMed  CAS  Google Scholar 

  • Lu SC (2008) Regulation of glutathione synthesis. Mol Aspects Med 30(1–2):42–59

    PubMed  Google Scholar 

  • Memisoğullari R, Taysi S, Bakan E, Capoglu I (2003) Antioxidant status and lipid peroxidation in type II diabetes mellitus. Cell Biochem Funct 21(3):291–296

    Article  PubMed  Google Scholar 

  • Molitch ME (1990) Diabetes mellitus. In: Walker HK, Hall WD, Hurst JW (eds) Clinical methods: the history, physical, and laboratory examinations, 3rd edn. Butterworths, Boston

    Google Scholar 

  • Nascimento NR, Costa-e-Forti A, Peter AA, Fonteles MC (2003) Free radical scavengers improve the impaired endothelium-dependent responses in aorta and kidneys of diabetic rabbits. Diabetes Res Clin Pract 61(3):145–153

    Article  PubMed  CAS  Google Scholar 

  • Paolisso G, Di Maro G, Pizza G, D’Amore A, Sgambato S, Tesauro P, Varricchio M, D’Onofrio F (1992) Plasma GSH/GSSG affects glucose homeostasis in healthy subjects and non-insulin-dependent diabetics. Am J Physiol Endocrinol Metab 263(3 Pt 1):E435–E440

    CAS  Google Scholar 

  • Quiros JA, Marcin JP, Kuppermann N, Nasrollahzadeh F, Rewers A, Di Carlo J, Neely EK, Glaser N (2008) Elevated serum amylase and lipase in pediatric diabetic ketoacidosis. Pediatr Crit Care Med 9(4):418–422

    Article  PubMed  Google Scholar 

  • Ramakrishna V, Jailkhani R (2008) Oxidative stress in non-insulin-dependent diabetes mellitus (NIDDM) patients. Acta Diabetol 45(1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Ramires PR, Ji LL (2001) Glutathione supplementation and training increases myocardial resistance to ischemia–reperfusion in vivo. Am J Physiol Heart Circ Physiol 281:H679–H688

    PubMed  CAS  Google Scholar 

  • Rizvi AA (2003) Amylase and lipase in diabetic ketoacidosis. Diabetes Care 26(11):3193–3194

    Article  PubMed  Google Scholar 

  • Shabeer J, Srivastava RS, Kumar Singh S (2009) Antidiabetic and antioxidant effect of various fractions of Phyllanthus simplex in alloxan diabetic rats. J Ethnopharmacol 124(1):34–38

    Article  PubMed  CAS  Google Scholar 

  • Sheng XQ, Huang KX, Xu HB (2005) Influence of alloxan-induced diabetes and selenite treatment on blood glucose and glutathione levels in mice. J Trace Elem Med Biol 18(3):261–267

    Article  PubMed  CAS  Google Scholar 

  • Stoppa GR, Cesquini M, Roman EA, Ogo SH, Torsoni MA (2006) Aminoguanidine prevented impairment of blood antioxidant system in insulin-dependent diabetic rats. Life Sci 78(12):1352–1361

    Article  PubMed  CAS  Google Scholar 

  • Takagi S, Tanabe A, Tsuiki M, Naruse M, Takano K (2009) Age, HbA1c, and prevalence of diabetes mellitus were positively correlated and serum potassium levels were negatively correlated with the severity of cardiac dysfunction. Endocr J 56(8):1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Thorp ML (2005) Diabetic nephropathy: common questions. Am Fam Physician 72(1):96–99

    PubMed  Google Scholar 

  • Trachtenbarg DE (2005) Diabetic ketoacidosis. Am Fam Physician 71(9):1705–1714

    PubMed  Google Scholar 

  • Van Konynenburg RA (2004) Is glutathione depletion an important part of the pathogenesis of chronic fatigue syndrome? Presented at the AACFS Seventh International Conference Madison, Wisconsin, 8–10 Oct 2004. http://www.aboutmecfs.org/Rsrch/GluAACFS04.aspx

  • Veno Y, Kizaki M, Nakagiri R, Kamiya T, Sumi H, Osawa T (2002) Dietary glutathione protects rats from diabetic nephropathy and neuropathy. J Nutr 132(5):897–900

    Google Scholar 

  • Vincent AM, Russel SW, Low P, Feldman EL (2004) Oxidative stress in the pathogenesis of diabetic neuropaths. Endocr Rev 25(4):612–628

    Article  PubMed  CAS  Google Scholar 

  • Winiarska K, Szymanski K, Gorniak P, Dudziak M, Bryla J (2009) Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits. Biochimie 91(2):261–270

    Article  PubMed  CAS  Google Scholar 

  • Yüksek V (2012) The electrophoretical determination of serum protein fraction of lycopene treated experimental diabetic rats. MSc thesis, Yüzüncü Yıl University, Van

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semiha Dede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yur, F., Dede, S., Karaca, T. et al. The Effect of Glutathione Treatment on the Biochemical and Immunohistochemical Profile in Streptozotocin-Induced Diabetic Rats. J Membrane Biol 246, 427–433 (2013). https://doi.org/10.1007/s00232-013-9541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9541-z

Keywords

Navigation