Skip to main content
Log in

Histopathological findings of the pancreas, liver, and carbohydrate metabolizing enzymes in STZ-induced diabetic rats improved by administration of myrtenal

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study aims to evaluate the efficacy of myrtenal, a natural monoterpene, for its antihyperglycemic effects and β cell protective properties in streptozotocin (STZ)-induced diabetic rats. Oral administration of myrtenal at doses of 20, 40, and 80 mg/kg body weight to diabetic rats for 28 days resulted in a significant reduction (P < 0.05) in the levels of plasma glucose, glycosylated hemoglobin (HbA1c), and an increase in the levels of insulin and hemoglobin (Hb). Protection of body weight loss of diabetic rats by myrtenal was noted. The altered activities of the key metabolic enzymes involved in carbohydrate metabolism such as hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, and hepatic enzymes AST, ALT, and ALP levels of diabetic rats were significantly improved by the administration of myrtenal in STZ-induced diabetic rats. Moreover, myrtenal treatment improved hepatic and muscle glycogen content in diabetic rats. Histopathological studies further revealed that the reduced islet cells were restored to near-normal conditions on treatment with myrtenal in STZ-induced diabetic rats. An alteration in liver architecture was also prevented by myrtenal treatment. Our results suggest that myrtenal possess antihyperglycemic and β cell protective effects. Hence, myrtenal could be considered as a potent phytochemical for development as a new antidiabetic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel-Rahim EA, El-Saadany SS, Abo-Eytta AM, Wasif MM (1992) The effect of sammo administration on some fundamental enzymes of pentose phosphate pathway and energy metabolites of alloxanised rat. Nahrung 36:8–14

    Article  CAS  PubMed  Google Scholar 

  2. Al-Shamaorry L, Al-khazrajoi SM, Twaij HA (1994) Hypoglycemic effect of Artemisia herbaalba. II. Effect of a valuable extract on some blood parameters in diabetic animals. J Ethnopharmacol 43:167–171

    Article  Google Scholar 

  3. Balamurugan R, Duraipandiyan V, Ignacimuthu S (2011) Antidiabetic activity of β-sitosterol isolated from Lippia nodiflora L. in streptozotocin induced diabetic rats. Eur J Pharmacol 667:410–418

    Article  CAS  PubMed  Google Scholar 

  4. Brandstrup N, Kirk JE, Bruni C (1957) Determination of hexokinase in tissues. J Gerontol 12:166–171

    Article  CAS  PubMed  Google Scholar 

  5. Chandramohan G, Ignacimuthu S, Pugalendi KV (2008) A novel compound from Casearia esculenta (Roxb.) root and its effect on carbohydrate metabolism in streptozotocin diabetic rats. Eur J Pharmacol 590:437–443

    Article  CAS  PubMed  Google Scholar 

  6. Charpentier G (2002) Oral combination therapy for type 2 diabetes. Diabetes Metab Res Rev 18:70–76

    Article  Google Scholar 

  7. Chen R, Meseck V, Mc Evoy RC, Woo SL (2000) Glucose stimulated and self-limiting insulin production by glucose 6-phosphatase promoter driven insulin expression in hepatoma cells. Gene Ther 7:1802–1809

    Article  CAS  PubMed  Google Scholar 

  8. Cruz Silva MM, Melo ML, Parolin M, Tessaro D, Riva S, Danieli B (2004) The biocatalyzed stereoselective preparation of polyciclic cyanohydrins. Tetrahedron Asymmetry 15:21–27

    Article  CAS  Google Scholar 

  9. Deepa B, Anuradha CV (2011) Linalool, a plant derived monoterpene alcohol, rescues kidney from diabetes-induced nephropathic changes via blood glucose reduction. Diabetol Croat 40–4

  10. Du Vigneaud V, Karr WG (1925) Carbohydrates utilization rate of disappearance of D-glucose from the blood. J Biol Chem 66:281–300

    Google Scholar 

  11. Ellis HA, Kirkman HN (1961) A colorimetric method for assay of erythrocyte glucose-6-phosphate dehydrogenase. Proc Soc Exp Biol Med 106:607–609

    Article  Google Scholar 

  12. Ferre T, Pujol A, Riu E, Bosch F, Valera A (1996) Correction of diabetic alterations by glucokinase. Proc Natl Acad Sci U S A 93:7225–7230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fiske CH, Subbarow J (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  14. Gancedo JM, Gancedo C (1971) Fructose 1, 6-bisphophatase, phosphofructokinase and glucose 6-phosphate dehydrogenase from fermenting yeast. Arch Microbiol 76:132–138

    CAS  Google Scholar 

  15. Garg SK, Ulrich H (2006) Achieving goal glycosylated hemoglobin levels in type 2 diabetes mellitus: practical strategies for success with insulin therapy. Insulin 1:109–121

    Article  Google Scholar 

  16. Giavarina D, Dorizzi RM, Moghetti P (1996) Fasting plasma glucose and diabetes diagnosis. Clin Chim Acta 252:209–213

    Article  CAS  PubMed  Google Scholar 

  17. Gokhan B, Hakan S, Aysegul B et al (2014) Carvacrol partially reverses symptoms of diabetes in STZ-induced diabetic rats. Cytotechnology 66:251–257

    Article  Google Scholar 

  18. Habiballah J, Mohsen N, Moghtar M, Zahra Z, Mohammad Y (2014) The effect of myrtus communis extract on liver enzymes and blood biochemical factors in diabetic adult male rats. Zahedan J Res Med Sci 16:12–17

    Google Scholar 

  19. Humason GI (1979) Animal tissue techniques. Freeman and Company, San Francisco

    Google Scholar 

  20. Kameswararao B, Kesavulu MM, Apparao C (2003) Evaluation of antidiabetic effect of Momordica cymbalaria fruit in alloxan-diabetic rats. Fitoterapia 74:7–13

    Article  CAS  PubMed  Google Scholar 

  21. Koide H, Oda T (1959) Pathological occurrence of glucose phosphatase in serum in liver diseases. Clin Chim Acta 4:554

    Article  CAS  PubMed  Google Scholar 

  22. Laakso M, Malkki M, Deeb (1995) Amino acid substituents in hexokinase II among patients with NIDDM. Diabetes 44:330–334

    Article  CAS  PubMed  Google Scholar 

  23. Leach MJ (2007) Gymnema sylvestre for diabetes mellitus: a systematic review. J Altern Complement Med 13:977–83

    Article  PubMed  Google Scholar 

  24. Babu LH, Perumal S, Balasubramanian MP (2012) Myrtenal, a natural monoterpene, down-regulates TNF-α expression and suppresses carcinogen-induced hepatocellular carcinoma in rats. Mol Cell Biochem 369:183–193

  25. Marica Lindmark H, Dan I, Tomas V, Irena V, Hans-Erik H, Kristina S (2004) Transformation of terpenes using a Picea abies suspension culture. J Biotechnol 107:173–184

    Article  Google Scholar 

  26. Masiello P, Broca C, Gross R, Roye M et al (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224–229

    Article  CAS  PubMed  Google Scholar 

  27. Mayes PA (2000) The pentose phosphate pathway and other pathway of hexose metabolism. In: Murray RK, Granner DK, Mayes VW (eds) Herper’s biochemistry. McGraw-Hill, USA, pp 219–237

    Google Scholar 

  28. McAnuff MA, Omoruyi FO, StA MEY, Asemota HN (2005) Changes in some liver enzymes in streptozotocin-induced diabetic rats fed sapogenin extract from bitter yam (Dioscorea polygonoides) or commercial Diosgenin. West Indian Med J 54:97

    Article  CAS  PubMed  Google Scholar 

  29. Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA (2007) Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 40:163–73

    Article  PubMed Central  PubMed  Google Scholar 

  30. Morales MA, Jabbay AJ, Tenenzi HP (1975) Mutation affecting accumulation of glycogen. Neurospora Newsl 20:24–25

    Google Scholar 

  31. Murali R, Saravanan R (2012) Antidiabetic effect of d-limonene, a monoterpene in streptozotocin-induced diabetic rats. Biomed Prev Nutr 2:269–275

    Article  Google Scholar 

  32. Murray RK, Granner DK, Mayes PA, Rodwell VW (2000) Harper' biochemistry, 25th edn. Appleton and Lange, Stanford

    Google Scholar 

  33. Navarro CM, Montilla PM, Martin A, Jimenez J, Utrilla PM (1993) Free radicals scavenger and anti-hepatotoxic activity of Rosmarinus tomentosus. Planta Med 59:312–314

    Article  Google Scholar 

  34. Pederson BA, Schroeder JM, Parker G et al (2005) Glucose metabolism in mice lacking muscle glycogen synthase. Diabetes 54:3466–3473

    Article  CAS  PubMed  Google Scholar 

  35. Postic C, Shiota M, Magnuson MA (2001) Cell-specific roles of glucokinase in glucose homeostasis. Recent Prog Horm Res 56:195–217

    Article  CAS  PubMed  Google Scholar 

  36. Pushparaj P, Tan CH, Tan BKH (2000) Effects of Averrhoa bilimbi leaf extract on blood glucose and lipids in streptozotocin-diabetic rats. J Ethnopharmacol 72:69–76

    Article  CAS  PubMed  Google Scholar 

  37. Rahelic D, Jenkins A, Bozikov V, Pavic E, Juric K, Fairgrieve C, Romic D, Kokic S, Vuksan V (2011) Glycemic index in diabetes. Coll Antropol 35:1363–1368

    PubMed  Google Scholar 

  38. Roden M, Bernroider E (2003) Hepatic glucose metabolism in humans-its role in health and disease. Best Pract Res 17:365–383

    Article  CAS  Google Scholar 

  39. Sagrawat H, Mann A, Kharya M (2006) Pharmacological potential of Eugenia jambolana: a review. Pharmacogenesis Magazice 2:96–104

    CAS  Google Scholar 

  40. Saito K, Okabe T, Inamori Y, Tsujibo H, Miyake Y, Hiraoka K, Ishida N (1996) The biological properties of monoterpenes: hypotensive effects on rats and antifungal activities on plant pathogenic fungi of monoterpenes. Mokuzai Gakkaishi 42:677–680

    CAS  Google Scholar 

  41. Serrano MED, López ML, Espuñes TRS (2006) Components bioactive os de aliment os functional es de origen vegetal. Rev Mex Cienc Farm 37:58–68

    Google Scholar 

  42. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  CAS  PubMed  Google Scholar 

  43. Sheela CG, Augusti KT (1992) Antidiabetic effects of S-allyl cysteine sulphoxide isolated from garlic Allium sativum Linn. Indian J Exp Biol 30:523–526

    CAS  PubMed  Google Scholar 

  44. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24

    Article  CAS  Google Scholar 

  45. Vibha JB, Choudhary K, Mangal S, Rathore MS, Shekhawat NS (2009) A study on pharmacokinetics and therapeutic efficacy of Glycyrrhiza glabra. A Miracle Med Herb Bot Res Int 2:157–163

    Google Scholar 

  46. Wajngot A, Chandramouli V, Schumann WC, Ekberg K, Jones PK, Efendic S, Landau BR (2001) Quantitative contributions of gluconeogenesis to glucose production during fasting in type 2 diabetes mellitus. Metabolism 50:47–52

    Article  CAS  PubMed  Google Scholar 

  47. Wei M, Ong L, Smith MT, Ross FB, Schmid K, Hoey AJ, Burstow BD (2003) The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart Lung Circ 12:44–50

    Article  PubMed  Google Scholar 

  48. Zhang B, Xiang HD, Mao WB, Guo XH, Wang JC, Jia WP, Yu M, Li Q, Fu ZY, Cao WH, Qian RL (2002) Epidemiological survey of chronic vascular complications of type 2 diabetic in-patients in four municipalities. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 24:452–456

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank the University Grants Commission (UGC), New Delhi, India for funding support in the form of research fellow under Research Fellowship in Science for Meritorious Students (RFSMS) Scheme to Ayyasamy Rathinam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leelavinothan Pari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinam, A., Pari, L., Chandramohan, R. et al. Histopathological findings of the pancreas, liver, and carbohydrate metabolizing enzymes in STZ-induced diabetic rats improved by administration of myrtenal. J Physiol Biochem 70, 935–946 (2014). https://doi.org/10.1007/s13105-014-0362-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0362-z

Keywords

Navigation