Skip to main content
Log in

Parametric variation studies of experimental flow boiling heat transfer phenomena using R407c inside an enhanced tube

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An experimental investigation examines the flow boiling heat transfer phenomena of a vapour compression refrigeration system employing R-407c refrigerant inside a newly configured enhanced horizontally oriented tube with a 20° helix angle and 52° apex angle at ambient pressure. Experiments were conducted on a 1000 mm enhanced tube of copper at saturation temperatures of 15 – 45 °C with input refrigerant heat fluxes of 5—85 kW/m2 and mass fluxes of 100–250 kg/m2s. The heat transfer coefficients for different configurations are obtained and compared with the established correlations for the heat transport phenomena. The experimental Nusselt number defining the convective heat transfer coefficient captured the established correlations with a mean error of 10%. A Nondimensional Jacob number is introduced to signify the sensible heat transfer effects. Local Nusselt varying with location and Jakob subcooling numbers are also introduced. The area ratio is 1.83 for the enhanced tubes concerning the smooth tube specification. Results predicted the 1.45 times enhancement of heat transfer coefficient for the enhanced tubes. Parametric variation is also incorporated to analyse the experimental nature more comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(c_{p}\) :

Specific heat capacity, kJ/kgK

\(D_{o}\) :

Outer diameter, mm

\(D_{i}\) :

Inner diameter, mm

\(G\) :

Mass velocity, kg/m2s

\(g\) :

Gravitational acceleration, m/s2

\(h\),\(HTC\) :

Heat transfer coefficient, kW/m2K

\(h_{fg}\) :

Enthalpy of vaporization, kJ/kg

\(I\) :

Current, amp

\(Ja_{sub}\) :

Subcooled Jacob number

\(k\) :

Thermal conductivity, kW/m.K

\(L\) :

Tube length, mm

\(\dot{m}\) :

Mass flow rate, kg/s

\(Nu\) :

Nusselt number

\(P\) :

Pressure, N/m2

\(Q_{p}\) :

Power supplied, kW/m2

\(q\) :

Heat flux, kW/m2

\(R\) :

Desired variable

\(T\) :

Temperature, K

\(U_{R}\) :

Estimated uncertainty

\(U_{{Y_{i} }}\) :

Individual uncertainty

\(V\) :

Voltage, V

\(x\) :

Vapor quality

\(Z\) :

Axial direction, mm

\(\alpha\) :

Apex angle

\(\beta\) :

Helix angle

\(\rho\) :

Density, kg/m3

\(\sigma\) :

Surface tension, N/m

\(\mu\) :

Dynamic viscosity, kg/m.s

\(avg\) :

Average

\(cal\) :

Calculated

\(\exp\) :

Experimental

\(i\) :

Inlet

\(l\) :

Liquid

\(o\) :

Outlet

\(r\) :

Refrigerant

\(s\) :

Surface

\(sat\) :

Saturation

\(sub\) :

Subcooled

\(v\) :

Vapour

\(w\) :

Water

References

  1. Ramanathan V (1975) Greenhouse Effect Due to Chlorofluorocarbons: Climatic Implications. Am Assoc Adv Sci 190:50–52. https://www.jstor.org/stable/1740877

  2. Wuebbles DJ (1994) The Role of Refrigerants in Climate Change. Int J Refrig 17(1):7–17. https://doi.org/10.1016/0140-7007(94)90082-5

    Article  Google Scholar 

  3. American Society of Heating R and AC Engineers (2015) Heating, Ventilating, and Air-Conditioning Applications. ASHRAE Handbook : Inch - Pound Edition

  4. Calm JM, Didion DA (1998) Trade-Offs in Refrigerant Selections: Past, Present, and Future. Int J Refrig 21(4):308–321. https://doi.org/10.1016/S0140-7007(97)00089-3

    Article  Google Scholar 

  5. Report of the Technology and Economic Assessment Panel (1988) United Nations Environment Programme. Technology and Economics Assessment Panel, Ozone Secretariat

  6. Aprea C, Greco A (1998) An experimental evaluation of the greenhouse effect in R22 substitution. Energy Convers Manag 39(9):877–887. https://doi.org/10.1016/S0196-8904(97)10058-9

    Article  Google Scholar 

  7. Cabello R, Torrella E, Navarro-Esbrí J (2004) Experimental evaluation of a vapour compression plant performance using R134a, R407C and R22 as working fluids. Appl Therm Eng 24(13):1905–1917. https://doi.org/10.1016/j.applthermaleng.2003.12.003

    Article  Google Scholar 

  8. Khaled ARA, Siddique M, Abdulhafiz NI, Boukhary AY (2010) Recent advances in heat transfer enhancements: A review report. Int J Chem Eng 2010:1–28. https://doi.org/10.1155/2010/106461

    Article  Google Scholar 

  9. Miyara A, Otsubo Y (2002) Condensation heat transfer of herringbone micro fin tubes. Int J Therm Sci 41(7):639–645. https://doi.org/10.1016/S1290-0729(02)01358-3

    Article  Google Scholar 

  10. Passos JC, Kuser VF, Haberschill P, Lallemand M (2003) Convective boiling of R-407c inside horizontal microfin and plain tubes. Exp Therm Fluid Sci 27(6):705–713. https://doi.org/10.1016/S0894-1777(02)00308-4

    Article  Google Scholar 

  11. Bandarra Filho EP, Saiz Jabardo JM, Barbieri PEL (2004) Convective boiling pressure drop of refrigerant R-134a in horizontal smooth and microfin tubes. J Int Acad Refrig 27(8):895–903. https://doi.org/10.1016/j.ijrefrig.2004.04.014

    Article  Google Scholar 

  12. Yun R, Kim Y, Kim MS (2005) Flow boiling heat transfer of carbon dioxide in horizontal mini tubes. Int J Heat Fluid Flow 26(5):801–809. https://doi.org/10.1016/j.ijheatfluidflow.2005.01.004

    Article  Google Scholar 

  13. Targanski W, Cieslinski JT (2007) Evaporation of R407C/oil mixtures inside corrugated and micro-fin tubes. Appl Therm Eng 27(13):2226–2232. https://doi.org/10.1016/j.applthermaleng.2005.07.026

    Article  Google Scholar 

  14. Zhang X (2011) Heat transfer and enhancement analyses of flow boiling for R417A and R22. Exp Therm Fluid Sci 35(7):1334–1342. https://doi.org/10.1016/j.expthermflusci.2011.04.020

    Article  Google Scholar 

  15. Zhao X, Bansal P (2012) Flow boiling heat transfer analysis of new experimental data of CO 2 in a micro-fin tube at -30 °c. Int J Therm Sci 59:38–44. https://doi.org/10.1016/j.ijthermalsci.2012.04.005

    Article  Google Scholar 

  16. Jiang GB, Tan JT, Nian QX, Tang SC, Tao WQ (2016) Experimental study of boiling heat transfer in smooth/micro-fin tubes of four refrigerants. Int J Heat Mass Transf 98:631–642. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.024

    Article  Google Scholar 

  17. Garcia J, Porto PM, Bonjour RR, J, Machado L (2017) An experimental study on two-phase frictional pressure drop for R-407c in smooth horizontal tubes. J Int Acad Refrig 73:163–174. https://doi.org/10.1016/j.ijrefrig.2016.09.018

    Article  Google Scholar 

  18. Zhang L, Wang Y, Yu Z (2018) Experimental study of flow boiling instabilities in horizontal tubes under gas–liquid stratification condition: Effects of heat flux and inlet subcooling degree. International Journal of Heat Mass Transf 118:1040–1045. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.032

    Article  Google Scholar 

  19. Lillo G, Mastrullo R, Mauro AW, Viscito L (2019) Flow boiling of R32 in a horizontal stainless steel tube with 6.00 mm ID. Experiments, assessment of correlations and comparison with refrigerant R410A. J Int Acad Refrig 97:143–156. https://doi.org/10.1016/j.ijrefrig.2018.09.024

    Article  Google Scholar 

  20. Celen A, Çebi A, Dalkılıç AS (2018) Investigation of boiling heat transfer characteristics of R134a flowing in smooth and microfin tubes. Int Commun Heat Mass Transf 93:21–33. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.006

    Article  Google Scholar 

  21. Yasser ZK, Hamad AJ (2019) Experimental and Numerical Analyses of R134a Flow Boiling Heat Transfer Characteristics in an Evaporator Tube of Refrigeration System. Int J Air-Cond Refrig 27(3):1–14. https://doi.org/10.1142/S201013251950024X

    Article  Google Scholar 

  22. Longo GA, Mancin S, Righetti G, Zilio C (2020) Flow boiling heat transfer capabilities of R134a low GWP substitutes inside a 4 mm id horizontal smooth tube: R600a and R152a. Heat Mass Transf. https://doi.org/10.1007/s00231-020-02991-x

    Article  Google Scholar 

  23. Das DC, Ghosh K, Sanyal D (2021) Scale analysis for water jet impingement over a horizontal flat plate under film boiling configuration. Heat Mass Transf 57:1211–1221. https://doi.org/10.1007/s00231-021-03024-x

    Article  Google Scholar 

  24. Deb S, Das M, Das DC, Pal S, Das AK, Das R (2020) Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b. Heat Mass Transf 56:3273–3287. https://doi.org/10.1007/s00231-020-02922-w

    Article  Google Scholar 

  25. Kumar A, Das DC, Das P (2022) Significance of surface morphology of materials on flow boiling heat transfer using R-407c. Mater Today: Proc 62:3122–3128. https://doi.org/10.1016/j.matpr.2022.03.394

    Article  Google Scholar 

  26. Rollmann P, Spindler K, Müller-Steinhagen H (2011) Heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube. Heat Mass Transf 47(8):951–961. https://doi.org/10.1007/s00231-011-0857-x

    Article  Google Scholar 

  27. Schultz RR, Cole R (1979) Uncertainty analysis in boiling nucleation. AIChE Symp 75(189):32–38

    Google Scholar 

  28. Liu Z, Winterton RHS (1991) General correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int J Heat Mass Transf 34:2759–2766. https://doi.org/10.1016/0017-9310(91)90234-6

    Article  Google Scholar 

  29. Kandlikar SG (1990) A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. J Heat Transf 112:219–228. https://doi.org/10.1115/1.2910348

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Das, D.C. & Das, P. Parametric variation studies of experimental flow boiling heat transfer phenomena using R407c inside an enhanced tube. Heat Mass Transfer 59, 1353–1363 (2023). https://doi.org/10.1007/s00231-023-03343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-023-03343-1

Navigation