Skip to main content

Advertisement

Log in

Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

A:

area (m 2)

ACC:

absorption chiller cycle

AP:

approach point (° C)

B:

brine

c:

cost per exergy unit ($. (kWs)−1)

\( \dot{C} \) :

cost rate ($. s −1)

C:

Constant coefficient

cc:

combustion chamber

C P :

Specific heat capacity (kJ/kg K)

CRF:

capital recovery factor

D:

Distillate at desalination(kg/s)

D r (i):

Distillate from the ith effect (kg/s)

e:

exergy per unit of mass (kJ/kg)

\( \dot{E} \) :

exergy rate (kW)

F:

Total feed flow rate of MED-TVC (kg/s)

f:

Feed water of desalination effects (kg/s)

GOR:

Gained-Output-Ratio

h:

specific enthalpy (kJ. kg −1)

HP:

High Pressure (MPa)

HRSG:

Heat recovery steam generator

k:

interest rate

L:

Latent heat \( \left( kJ.{kg}^{-1}\right) \)

LHV:

Lower Heating Value \( \left( kJ.{kg}^{-1}{K}^{-1}\right) \)

LMTD:

logarithmic mean temperature difference (°C)

LP:

Low Pressure (MPa)

\( \dot{m} \) :

mass flow rate (kg. s −1)

MP:

Medium Pressure (MPa)

MED:

multi-effect desalination

MG:

multigeneration

N:

annual number of hours (hr)

n:

componets expected life

P:

pressure (MPa)

PP:

Pinch Point (°C)

\( \dot{Q} \) :

heat transfer rate (kW)

R:

reference

r:

Pressure ratio \( \left(\frac{\mathrm{MPa}}{\mathrm{MPa}}\right) \)

\( \overline{R} \) :

universal gases constant (J. kg −1 K −1)

Rej:

Seawater reject \( \left(\frac{\mathrm{kg}}{\mathrm{s}}\right) \)

s:

specific entropy (kJ. kg −1. K −1)

T:

temperature (° C)

TVC:

Thermal vapor compression

\( \dot{W} \) :

power (kW)

X B :

ammonia mass fraction of basic solution (%)

Y:

molar concentration

Z:

investment cost of components ($)

\( \dot{Z} \) :

investment cost rate of components ($. s −1)

η:

efficiency (%)

ω:

humidity ratio

ϕr :

maintenance factor

λ:

fuel to air ratio

∆T:

Temperature difference

a:

Air

abs:

absorber

cc:

Combustion chamber

CH:

chemical

CI:

capital investment

comp:

compressor

cond:

condenser

D:

destruction

e:

exit

ec:

economizer

evap:

evaporator

ex:

exergy

f:

fluid

fuel:

fuel

g:

gas

gen:

generator

gene:

generation

heating:

heating

HP:

High pressure

i:

inlet

is:

isentropic

i:

ith component

KN:

kinetic

L:

loss

LiBr:

Lithium bromide

LP:

Low pressure

mix:

mixing

MP:

Medium pressure

net:

net value

OM:

operating & maintenance

P:

product

PEC:

initial purchase cost

PH:

physical

PT:

potential

pump:

pump

Q:

heating

s:

salt

sh:

superheater

sat,HP:

high pressure saturation

sat,LP:

Low pressure saturation

sat,MP:

medium pressure saturation

sat:

saturation

sw:

seawater

sol:

solution

t:

turbine

Ts :

First effect desalination inlet temperature (° C)

tot:

total value

W:

work

w:

water

1, 2, …:

cycle locations

0:

dead state

References

  1. Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev 4:157–175

    Article  Google Scholar 

  2. Dincer I, Rosen MA (1998) A worldwide perspective on energy, environment and sustainable development. Int J Energy Res 22:1305–1321

    Article  Google Scholar 

  3. Dincer I, Rosen MA (1999) Energy, environment and sustainable development. Appl Energy 64:427–440

    Article  Google Scholar 

  4. Hatami M, Boot MD, Ganji DD, Gorji-Bandpy M (2015a) Comparative study of different exhaust heat exchangers effect on the performance and exergy analysis of a diesel engine. Appl Therm Eng 90:23–37

    Article  Google Scholar 

  5. Hatami M, Ganji DD, Gorji-Bandpy M (2015b) Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery. Energy Convers Manag 97:26–41

    Article  Google Scholar 

  6. Ghaebi H, Amidpour M, Karimkashi S, Rezayan O (2011) Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover. Int J Energy Res 35:697–709

    Article  Google Scholar 

  7. Ghaebi H, Saidi MH, Ahmadi P (2012) Exergoeconomic optimization of a trigeneration system for heating, cooling and power production purpose based on TRR method and using evolutionary algorithm. Appl Therm Eng 36:113–125

    Article  Google Scholar 

  8. Orhan MF, Dincer I, Naterer GF, Rosen MA (2010) Coupling of copper–chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy. Int J Hydrog Energy 35:1560–1574

    Article  Google Scholar 

  9. Uche J, Serra L, Valero A (2001) Thermoeconomic optimization of a dual-purpose power and desalination plant. Desalination 136:147–158

    Article  Google Scholar 

  10. Zamen Z, Amidpour M, Soufari SM (2009) Cost optimization of a solar humidification–dehumidification desalination unit using mathematical programming. Desalination 239:92–99

    Article  Google Scholar 

  11. Wang Y, Lior N (2006) Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems, part 1: the desalination unit and its combination with a steam-injected gas turbine power system. Desalination 196:84–104

    Article  Google Scholar 

  12. Alasfour FN, Darwish MA, Bin Amer AO (2005) Thermal analysis of ME-TVC+MEE desalination systems. Desalination 174:39–61

    Article  Google Scholar 

  13. Kahraman N, Cengel YA (2005) Exergy analysis of a MSF distillation plant. Energy Convers Manag 46:2625–2636

    Article  Google Scholar 

  14. Kafi F, Renaudin V, Alonso D, Hornut JM (2004) New MED plate desalination process: thermal performances. Desalination 166:53–62

    Article  Google Scholar 

  15. Shih H (2005) Evaluating the technologies of thermal desalination using low-grade heat. Desalination 182:461–469

    Article  Google Scholar 

  16. Ji J, Wang R, Li L, Ni HI (2007) Simulation and analysis of a single-effect thermal vapor compression desalination system at variable operation conditions. Chem Eng Technol 30:1633–1641

    Article  Google Scholar 

  17. Kamali RK, Mohebinia S (2008) Experience of design and optimization of multi-effects desalination systems in Iran. Desalination 222:639–645

    Article  Google Scholar 

  18. Kamali RK, Abbassi A, Sadough Vanini SA, Saffar Avval M (2008) Thermodynamic design and parametric study of MED-TVC. Desalination 222:596–604

    Article  Google Scholar 

  19. Ameri M, Seif Mohammadi S, Hosseini M, Seifi M (2009) Effect of design parameters on multi-effect desalination system specifications. Desalination 245:266–283

    Article  Google Scholar 

  20. Trostmann A (2009) Improved approach to steady state simulation of multi-effect distillation plants. Desalin Water Treat 7:93–110

    Article  Google Scholar 

  21. Shakib SE, Amidpour M, Aghanajafi C (2012a) Simulation and optimization of multi effect desalination coupled to a gas turbine plant with HRSG consideration. Desalination 285:366–376

    Article  Google Scholar 

  22. Shakib SE, Amidpour M, Aghanajafi C (2012b) A new approach for process optimization of a METVC desalination system. Desalin Water Treat 37:1–13

    Article  Google Scholar 

  23. Fiorini P, Sciubba E (2005) Thermoeconomic analysis of a MSF desalination plant. Desalination 182:39–51

    Article  Google Scholar 

  24. Sayyaadi H, Saffari A (2010) Thermoeconomic optimization of multi effect distillation desalination systems. Appl Energy 87:1122–1133

    Article  Google Scholar 

  25. Sayyaadi H, Saffari A, Mahmoodian A (2010) Various approaches in optimization of multi effects distillation desalination systems using a hybrid meta-heuristic optimization tool. Desalination 254:138–148

    Article  Google Scholar 

  26. Wang Y, Lior N (2007) Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems, part 2: the evaporative gas turbine based system and some discussions. Desalination 207:243–256

    Article  Google Scholar 

  27. Nafey AS (1998) Design and simulation of sea water thermal desalination plants. Ph.D. Thesis. Leeds University, UK

  28. Ettouney H, El-Desouky E, Al-Roumi Y (1999) Analysis of mechanical vapor compression desalination process. Int J Energy Res 23:431–451

    Article  Google Scholar 

  29. Aly G (1983) Computer simulations of multi-effect FFE– VC systems for water desalination. Desalination 45:119–131

    Article  Google Scholar 

  30. Aly NH, El-Fiqi AK (2003) Mechanical vapor compression desalination systems: case study. Desalination 153:143–150

    Article  Google Scholar 

  31. El-Sayed YM (1999) Thermoeconomic of some options of large mechanical vapor mechanical vapor-compression units. Desalination 125:251–257

    Article  MathSciNet  Google Scholar 

  32. Bejan A, Tsatsaronis G, Moran M (1996) Thermal design and optimization. John Wiley, NewYork

    MATH  Google Scholar 

  33. Darwish MA, El-Hadik AA (1986) The multi-effect boiling desalination system and its comparison with multi-stage flash system. Desalination 60:251–265

    Article  Google Scholar 

  34. Cengel AY, Boles AM (1994) Thermodynamics: an engineering approach. McGraw-Hill, New York

    Google Scholar 

  35. Herold KE, Radermacher R, Klein SA (1996) Absorption chillers and heat pump. CRC Press, Boca Raton

    Google Scholar 

  36. Kotas TJ (1995) The exergy method of thermal plant analysis. Krieger Publishing Company, Malabar

    Google Scholar 

  37. Kizilkan O, Sencan A, Kalogirou SA (2007) Thermoeconomic optimization of a LiBr absorption refrigeration system. Chem Eng Process 46:1376–1384

    Article  Google Scholar 

  38. Sencan A, Yakut KA, Kalogirou SA (2005) Exergy analysis of lithium bromide/water absorption systems. Renew Energy 30:645–657

    Article  Google Scholar 

  39. Korakiantis T, Wilson DG (1994) Methods for prediction the performance of Bryton-cycle engines. ASME J Eng Gas Turbines Power 166:381–388

    Article  Google Scholar 

  40. Kamali RK, Abbassi A, Sadough SA (2006) A simulation model and parametric study of MED–TVC process. In: EDS International Conference, EuroMed, p 203

  41. Bereche RP, Gonzales R, Nebra SA (2010) Exergy calculation of lithium bromide–water solution and its application in the exergetic evaluation of absorption refrigeration systems LiBr-H2O. Int J Energy Res 36:166–181

    Article  Google Scholar 

  42. Mishra M, Das PK, Sarangi S (2004) Optimum design of cross flow plate-fin heat exchangers through genetic algorithm. Int J Heat Exch 5:379–401

    Google Scholar 

  43. Dincer I (1998) Energy and environmental impacts: present and future perspectives. Energy Sources 20:427–453

    Article  Google Scholar 

  44. Fath SH (2000) Desalination technology. El dar Elgameia, Alexandria

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Ghaebi.

Appendices

Appendix 1: Energy balance equations for different components

Gas turbine cycle:

To calculate the compressor efficiency (η comp ), following relation can be used [39]:

$$ {\eta}_{comp}=1-\left(0.04+\frac{r_{comp}-1}{150}\right), $$
(28)

where, r comp is the compressor pressure ratio. The net consumed compressor power is calculated as follows:

$$ {\overset{\cdotp }{W}}_{comp}={\overset{\cdotp }{m}}_{air}\left(1+{\omega}_1\right)\left({h}_2-{h}_1\right) $$
(29)

where, ω is the humidity ratio.

Applying energy balance equation on the combustion chamber, the input heat of the proposed integrated system can be calculated as follows:

$$ {\dot{Q}}_{in}={\dot{m}}_{air}\left(1+\lambda \right)\left({h}_3-{h}_2\right), $$
(30)

where, λ is the fuel to air ratio.

The gas turbine isentropic efficiency can be obtained from the following relation [39]:

$$ {\eta}_t=\mathsf{1}-\left(\mathsf{0.03}+\frac{r_t-1}{180}\right). $$
(31)

To calculate the output power of turbine, following relation is taken into account:

$$ {\dot{W}}_t={\dot{m}}_{\mathrm{gas}}\left({h}_{\mathsf{3}}-{h}_{\mathsf{4}}\right). $$
(32)

After conducting the above mentioned mathematical manipulation, the net output power of the gas turbine cycle can be calculated as follows:

$$ {\dot{W}}_{net}={\dot{W}}_t-{\dot{W}}_{comp}. $$
(33)

HRSG:

Figure 22 illustrates the HRSG temperature profile. Pinch point is the difference between the exhaust gas temperature from the evaporator (economizer side) and the saturated liquid temperature. Triple-pressure heat recovery generator has three pinch points. The difference in the temperature of the outlet water from the economizer (T w2, T w4 and T w6) and the saturated temperature (T sat, LP , T sat, MP and T sat, HP ) is called the approach point, which its value depends on the economizer arrangement. In this study, the values of approach points (AP LP , AP MP and AP HP ) are assumed 5° C

Fig. 22
figure 22

Temperature profile in HRSG

The feed water enters to LP economizer with temperature of T w1 and is heated to T w2 by extracting heat of the flue gas. The T w2 is calculated as follows:

$$ {T}_{w2}={T}_{sat, LP}-{AP}_{LP}. $$
(34)

Similarly, T w4 and T w6 are calculated:

$$ {T}_{w4}={T}_{sat, MP}-{AP}_{MP}, $$
(35)
$$ {T}_{w6}={T}_{sat, HP}-{AP}_{HP}, $$
(36)

where, T sat, LP , T sat, MP and T sat, HP are saturated steam temperatures of low pressure, medium pressure and high pressure streams.

Similarly, from Fig. 22, we have:

$$ {T}_{w3}={T}_{w2}, $$
(37)
$$ {T}_{w5}={T}_{w4}. $$
(38)

The flue gas entered HRSG with the temperatures of T4, g3, T4, g5 and T4, g7 are calculated from the Eqs. (3941):

$$ {T}_{4,g3}={T}_{sat, HP}+{PP}_{HP}, $$
(39)
$$ {T}_{4,g5}={T}_{sat, MP}+{PP}_{MP}, $$
(40)
$$ {T}_{4,g7}={T}_{sat, LP}+{PP}_{LP}. $$
(41)

Applying energy balance equations for the economizers of HRSG, feed water mass flow rate (or heating mass flow rate) and also T 4, g4 and T 4, g6 can be obtained as follows:

$$ {\dot{m}}_{heating}\times \left({h}_{w,1}-{h}_{w,2}\right)+{\dot{m}}_g\times \left({h}_{4,g7}-{h}_{4,g8}\right)=0, $$
(42)
$$ {\dot{m}}_{heating}\times \left({h}_{w,3}-{h}_{w,4}\right)+{\dot{m}}_g\times \left({h}_{4,g5}-{h}_{4,g6}\right)=0, $$
(43)
$$ {\dot{m}}_{heating}\times \left({h}_{w,5}-{h}_{w,6}\right)+{\dot{m}}_g\times \left({h}_{4,g3}-{h}_{4,g4}\right)=0. $$
(44)

The mas flow rate of absorption chiller, desalination system and T 4, g2 are obtained from the following relations:

$$ {\dot{m}}_{cooling}\times \left({h}_{\left( water,{T}_{sat, LP,x=0}\right)}-{h}_{\left( water,{T}_{sat, LP,x=1}\right)}\right)+{\dot{m}}_g\times \left({h}_{4,g6}-{h}_{4,g7}\right)=0, $$
(45)
$$ {\dot{m}}_{desalination}\times \left({h}_{\left( water,{T}_{sat, MP,x=0}\right)}-{h}_{\left( water,{T}_{sat, MP,x=1}\right)}\right)+{\dot{m}}_g\times \left({h}_{4,g4}-{h}_{4,g5}\right)=0, $$
(46)
$$ {\dot{m}}_{heating}\times \left({h}_{\left( water,{T}_{sat, HP,x=0}\right)}-{h}_{\left( water,{T}_{sat, HP,x=1}\right)}\right)+{\dot{m}}_g\times \left({h}_{4,g2}-{h}_{4,g3}\right)=0. $$
(47)

Now, energy balance is applied to HP superheater of the HRSG for calculating the temperature of the superheated process steam:

$$ {\dot{m}}_{heating}\times \left({h}_{\left( water,{T}_{sat, HP,x=1}\right)}-{h}_{w,7}\right)+{\dot{m}}_g\times \left({h}_{4,g1}-{h}_{4,g2}\right)=0. $$
(48)

The amount of heating capacity produced in the system is calculated as below:

$$ {Q}_{heating}={\dot{m}}_{heating}\times \left({h}_{w,7}-{h}_{w,1}\right). $$
(49)

Absorption chiller cycle:

For thermodynamic analysis of the absorption chiller cycle, the energy balance equation for each component of system can be applied using Eqs. (1, 2). These employed equations are given below:

  • Evaporator:

$$ {\dot{Q}}_{evap}={\dot{m}}_{13}\left({h}_{16}-{h}_{13}\right). $$
(50)
  • Absorber:

$$ {\dot{m}}_{18}{x}_{18}={\dot{m}}_{17}{x}_{17}, $$
(51)
$$ {\dot{Q}}_{abs}={\dot{m}}_{18}{h}_{18}-{\dot{m}}_{17}{h}_{17}-{\dot{m}}_{16}{h}_{16}. $$
(52)
  • Pump

$$ {\dot{W}}_{pump}={\dot{m}}_{18}{v}_{18}\left({P}_{18}-{P}_{21}\right). $$
(53)
  • Heat exchanger

$$ {\dot{m}}_{21}{h}_{21}+{\dot{m}}_8{h}_8={\dot{m}}_{22}{h}_{22}+{\dot{m}}_7{h}_7. $$
(54)
  • Generator

$$ {\dot{m}}_8{x}_8={\dot{m}}_7{x}_7, $$
(55)
$$ {\dot{Q}}_{gen}={\dot{m}}_8{h}_8+{\dot{m}}_9{h}_9-{\dot{m}}_7{h}_7. $$
(56)
  • Condenser

$$ {\dot{Q}}_{cond}={\dot{m}}_{12}\left({h}_{12}-{h}_9\right). $$
(57)

The amount of cooling capacity of the chiller is equal to the evaporator load:

$$ {\dot{Q}}_{cooling}=-{\dot{Q}}_{evap}={\dot{m}}_{13}\left({h}_{13}-{h}_{16}\right). $$
(58)

MED-TVC desalination plant system:

MED system is divided into five sub-systems and mass and energy balances are applied for each of them as follows:

  • Steam ejector and desuperheater:

$$ R=\frac{{\dot{m}}_{24}}{{\dot{m}}_{25}}, $$
(59)
$$ {h}_{26}=\frac{Rh_{24}+{h}_{25}}{1+R}, $$
(60)
$$ {R}_1=\frac{{\dot{m}}_{63}}{{\dot{m}}_{24}+{\dot{m}}_{25}}, $$
(61)
$$ {R}_1=\frac{h_{26}-{h}_{27}}{h_{27}-{h}_{63}}, $$
(62)
$$ {\dot{m}}_{63}={\dot{m}}_{24}{R}_1\left(1+\frac{1}{R}\right), $$
(63)

where, \( {\dot{\mathrm{m}}}_{24} \), \( {\dot{\mathrm{m}}}_{25} \) and \( {\dot{\mathrm{m}}}_{63} \) are the mass flow rates of the ejector motive steam, withdrawn vapor from nth effect by steam ejector and water consumed in desuperheater, respectively.

  • Effects 1,…,N:

In order to have a more efficient operational condition, it is assumed that the temperature difference of all effects is the same [25]:

$$ \varDelta {T}_{effect}=\left(\frac{T_s-T(N)}{N}\right), $$
(64)

where,

$$ {T}_1={T}_s-\varDelta T, $$
(65)
$$ T\left(i+1\right)=T(i)-\varDelta T,\kern1.75em i=1,2,\dots, N-1 $$
(66)

In this study, the mass flow rates of steam, brine and feed water of the ith effect are denoted by D(i), B(i) and f(i), respectively. In addition, the latent heat and the specific heat capacities of water in the ith effect are specified by L(i) and Cp(i), respectively. With these regards, the mass and energy balances for the effects of 1,…,N will be as follows [40]:

✓ Effects 1, 2 and 3:

$$ \left({\dot{m}}_{24}+{\dot{m}}_{25}+{\dot{m}}_{63}\right){L}_{24}=f(i){Cp}_f\left(T(1)-{T}_f(1)\right)+D(1)L(1), $$
(67)
$$ \left(D(1)-{D}_r(1)\right)L(1)+B(1){Cp}_B\varDelta T=f(2){Cp}_f\left(T(2)-{T}_f(2)\right)+D(2)L(2), $$
(68)
$$ \left(D(2)-{D}_r(2)\right)L(2)+B(2){Cp}_B\varDelta T=f(3){Cp}_f\left(T(3)-{T}_f(3)\right)+D(3)L(3), $$
(69)

✓ Effects 4,…,N:

$$ \left(D\left(i-1\right)-{D}_r\left(i-1\right)\right)L\left(i-1\right)+B\left(i-1\right){Cp}_B\varDelta T=f(i){Cp}_f\left(T(i)-{T}_f(i)\right)+D(i)L(i),\kern0.5em \mathrm{i}=4,\dots, N. $$
(70)

The steam is only withdrawn in the Nth effect (inlet of steam ejector), so:

$$ i\ne n\kern0.5em \to \kern0.5em {D}_r(i)=0, $$
(71)
$$ B(i)=\sum \limits_{i=1}^Nf(i)-\sum \limits_{i=1}^ND(i)\kern0.75em ,\kern0.5em i=1,2,\dots, N. $$
(72)
  • Feed water heater:

The energy balance for feed-water heater can be expressed as follows:

$$ \sum \limits_{i=1}^{N-1}D(i)\left({h}_f(i)-{h}_f(N)\right)+{\dot{m}}_{24}\times \left[{h}_{f24}\left({R}_1+\frac{1+{R}_1}{R}\right)-\frac{h_{f24}}{R}-{h}_{fN}\left({R}_1+\frac{R_1}{R}\right)\right]=\left(f(1)+f(2)+f(3)\right){Cp}_f\left({T}_f(1)-{T}_f\right). $$
(73)
  • Condenser:

The mass and energy balance equations for the condenser can be written as follows:

$$ {T}_f=T(N)-\varDelta {T}_{\min, cond}, $$
(74)
$$ {\dot{m}}_{57}=F+ Rej, $$
(75)
$$ \left(D(N)-{D}_r(N)\right)L(N)=\left(F+ Rej\right){Cp}_{sw}\left({T}_f-{T}_{sw}\right), $$
(76)

where, \( {\dot{m}}_{57} \) , F, and Rej are the mass flow rates of condenser cooling water, feed water MED and the rejected water from desalination system, respectively. D(N) is the total rate of the exhaust steam of the Nth effect, D r (N) is the rate of the withdrawn steam from the effect N and T f and T sw are the feed water and seawater temperatures, respectively.

Gained-Output-Ratio (GOR) is another important parameter in thermal desalination plants which is defined as the ratio between the mass flow rate of produced fresh water and that of the consumed motive steam:

$$ GOR=\frac{{\dot{m}}_{61}\ }{{\dot{m}}_{24}}. $$
(77)

The MED-TVC plant duty can be obtained from the following relation:

$$ {\dot{Q}}_{desalination}={\dot{m}}_{61}\left({h}_{61}-{h}_{sw}\right). $$
(78)

The overall thermal efficiency of system can be defined as the ratio of output energies of the system (cooling, heating, power and fresh water) to the input energy supplied to the system:

$$ {\eta}_{system}=\frac{{\dot{\mathrm{W}}}_{net}+{\dot{Q}}_{heating}+{\dot{Q}}_{cooling}+{\dot{Q}}_{desalination}}{{\dot{\mathrm{m}}}_{fuel}\times LHV}, $$
(79)

where, LHV is the lower heating value of the fuel.

Appendix 2: Exergy relations

The chemical exergy is obtained by combining the combustion gases in accordance with Eq. (80). The fixed values in the numerator are the exergy of the elements substituted from Ref. [32].

$$ {\dot{E}}^{CH}={\dot{\mathrm{m}}}_{gas}\times \left(\frac{\begin{array}{l}639\times {Y}_{N_2}\times 3951\times {Y}_{O_2}+14176\times {Y}_{CO_2}+8636\times {Y}_{H_2O}+8.3143\times {T}_0\times \\ {}\left({Y}_{N_2}\times \mathit{\ln}\left({Y}_{N_2}\right)+{Y}_{O_2}\times \mathit{\ln}\left({Y}_{O_2}\right)+{Y}_{CO_2}\times \mathit{\ln}\left({Y}_{CO_2}\right)+{Y}_{H_2O}\times \mathit{\ln}\left({Y}_{H_2O}\right)\right)\times \left({Y}_{N_2}+{Y}_{O_2}+{Y}_{H_2O}\right)+ diff\times (45)\end{array}}{M_{mix}}\right). $$
(80)

The chemical exergy of LiBr-H2O solution can be obtained from the following relation [41]:

$$ {\dot{\mathrm{E}}}^{\mathrm{CH}}={\dot{\mathrm{m}}}_{\mathrm{LiBr}/{\mathrm{H}}_2\mathrm{O}}\times \left(\frac{{\overline{\mathrm{Y}}}_{{\mathrm{H}}_2\mathrm{O}}\times {\upvarepsilon}_{{\mathrm{H}}_2\mathrm{O}}+{\overline{\mathrm{Y}}}_{\mathrm{LiBr}}\times {\upvarepsilon}_{\mathrm{LiBr}}+\overline{\mathrm{R}}\times {\mathrm{T}}_0\times \left({\overline{\mathrm{Y}}}_{{\mathrm{H}}_2\mathrm{O}}\times \ln \left({\mathrm{a}}_{{\mathrm{H}}_2\mathrm{O}}\right)+{\overline{\mathrm{Y}}}_{\mathrm{LiBr}}\times \ln \left({\mathrm{a}}_{\mathrm{LiBr}}\right)\right)}{{\mathrm{M}}_{\mathrm{sol}}}\right). $$
(81)

where, \( {\upvarepsilon}_{{\mathrm{H}}_2\mathrm{O}}=0.9\frac{\mathrm{kJ}}{\mathrm{kg}} \) and \( {\upvarepsilon}_{\mathrm{LiBr}}=101.6\frac{\mathrm{kJ}}{\mathrm{kg}} \). \( {\mathrm{a}}_{{\mathrm{H}}_2\mathrm{O}} \) and aLiBr coefficients are obtained from Ref. [41].

Also, chemical exergy of seawater can be obtained from the following equation [21]:

$$ {\dot{E}}^{CH}=-{\dot{m}}_{sw}\times \frac{\overline{R}\times {T}_0\times \left({X}_{\frac{W}{s}}\times \mathit{\ln}\left({X}_{\frac{W}{s}}\right)+X\frac{s}{W}\times \mathit{\ln}\left({X}_{\frac{s}{W}}\right)\right)}{M_{sw}}. $$
(82)

For one stream, we have:

$$ {\dot{E}}_{sw}={\dot{E}}_Q+{\dot{m}}_i{e}_i-{\dot{m}}_e{e}_e-{\dot{E}}_D. $$
(83)

The exergy destruction of each component in the proposed multigeneration system can be obtained from the following relationships.

  • For compressor:

$$ {\dot{E}}_{D, comp}={\dot{E}}_1+{\dot{E}}_2+{\dot{W}}_{comp}. $$
(84)
  • For combustion chamber:

$$ {\dot{E}}_{D, cc}={\dot{E}}_2+{\dot{E}}_F+{\dot{E}}_3. $$
(85)
  • For turbine:

$$ {\dot{E}}_{D,t}={\dot{E}}_3+{\dot{E}}_4+{\dot{W}}_t. $$
(86)
  • For HRSG:

$$ {\dot{E}}_{D, HRSG}={\dot{E}}_{W1}+{\dot{E}}_{D, in, LP, evap}+{\dot{E}}_{D, in, MP, evap}+{\dot{E}}_4-{\dot{E}}_{W3}-{\dot{E}}_{W5}-{\dot{E}}_{W7}-{\dot{E}}_{4,g8}. $$
(87)
  • For absorption chiller:

$$ {\dot{E}}_{D, chiller}={\dot{E}}_5+{\dot{E}}_{10}+{\dot{E}}_{14}+{\dot{E}}_{19}-{\dot{E}}_6-{\dot{E}}_{11}-{\dot{E}}_{15}-{\dot{E}}_{20}. $$
(88)
  • For desalination system:

$$ {\dot{E}}_{D, desalination}={\dot{E}}_{24}+{\dot{E}}_{23}+{\dot{E}}_{57}+{\dot{E}}_{Rej}-{\dot{E}}_{54}-{\dot{E}}_{61}. $$
(89)

The total exergy destruction rate of system can be expressed as follows:

$$ {\dot{E}}_{D, total}=\sum \limits_{i=1}^n{\dot{E}}_{D,i}. $$
(90)

Appendix 3

Table 10 is listed the cost flow rate, cost balance equations and auxiliary equations for the proposed multigeneration system.

Table 10 Cost balance and auxiliary equations for components of the proposed MG system

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaebi, H., Abbaspour, G. Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG. Heat Mass Transfer 54, 1337–1357 (2018). https://doi.org/10.1007/s00231-017-2226-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2226-x

Navigation