Heat and Mass Transfer

, Volume 54, Issue 5, pp 1337–1357 | Cite as

Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG

Original
  • 82 Downloads

Abstract

In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.

Nomenclature

Symbols

A

area (m 2)

ACC

absorption chiller cycle

AP

approach point (° C)

B

brine

c

cost per exergy unit ($. (kWs)−1)

\( \dot{C} \)

cost rate ($. s −1)

C

Constant coefficient

cc

combustion chamber

CP

Specific heat capacity (kJ/kg K)

CRF

capital recovery factor

D

Distillate at desalination(kg/s)

Dr(i)

Distillate from the ith effect (kg/s)

e

exergy per unit of mass (kJ/kg)

\( \dot{E} \)

exergy rate (kW)

F

Total feed flow rate of MED-TVC (kg/s)

f

Feed water of desalination effects (kg/s)

GOR

Gained-Output-Ratio

h

specific enthalpy (kJ. kg −1)

HP

High Pressure (MPa)

HRSG

Heat recovery steam generator

k

interest rate

L

Latent heat \( \left( kJ.{kg}^{-1}\right) \)

LHV

Lower Heating Value \( \left( kJ.{kg}^{-1}{K}^{-1}\right) \)

LMTD

logarithmic mean temperature difference (°C)

LP

Low Pressure (MPa)

\( \dot{m} \)

mass flow rate (kg. s −1)

MP

Medium Pressure (MPa)

MED

multi-effect desalination

MG

multigeneration

N

annual number of hours (hr)

n

componets expected life

P

pressure (MPa)

PP

Pinch Point (°C)

\( \dot{Q} \)

heat transfer rate (kW)

R

reference

r

Pressure ratio \( \left(\frac{\mathrm{MPa}}{\mathrm{MPa}}\right) \)

\( \overline{R} \)

universal gases constant (J. kg −1 K −1)

Rej

Seawater reject \( \left(\frac{\mathrm{kg}}{\mathrm{s}}\right) \)

s

specific entropy (kJ. kg −1. K −1)

T

temperature (° C)

TVC

Thermal vapor compression

\( \dot{W} \)

power (kW)

XB

ammonia mass fraction of basic solution (%)

Y

molar concentration

Z

investment cost of components ($)

\( \dot{Z} \)

investment cost rate of components ($. s −1)

Greek symbols

η

efficiency (%)

ω

humidity ratio

ϕr

maintenance factor

λ

fuel to air ratio

∆T

Temperature difference

Subscripts and superscripts

a

Air

abs

absorber

cc

Combustion chamber

CH

chemical

CI

capital investment

comp

compressor

cond

condenser

D

destruction

e

exit

ec

economizer

evap

evaporator

ex

exergy

f

fluid

fuel

fuel

g

gas

gen

generator

gene

generation

heating

heating

HP

High pressure

i

inlet

is

isentropic

i

ith component

KN

kinetic

L

loss

LiBr

Lithium bromide

LP

Low pressure

mix

mixing

MP

Medium pressure

net

net value

OM

operating & maintenance

P

product

PEC

initial purchase cost

PH

physical

PT

potential

pump

pump

Q

heating

s

salt

sh

superheater

sat,HP

high pressure saturation

sat,LP

Low pressure saturation

sat,MP

medium pressure saturation

sat

saturation

sw

seawater

sol

solution

t

turbine

Ts

First effect desalination inlet temperature (° C)

tot

total value

W

work

w

water

1, 2, …

cycle locations

0

dead state

References

  1. 1.
    Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev 4:157–175CrossRefGoogle Scholar
  2. 2.
    Dincer I, Rosen MA (1998) A worldwide perspective on energy, environment and sustainable development. Int J Energy Res 22:1305–1321CrossRefGoogle Scholar
  3. 3.
    Dincer I, Rosen MA (1999) Energy, environment and sustainable development. Appl Energy 64:427–440CrossRefGoogle Scholar
  4. 4.
    Hatami M, Boot MD, Ganji DD, Gorji-Bandpy M (2015a) Comparative study of different exhaust heat exchangers effect on the performance and exergy analysis of a diesel engine. Appl Therm Eng 90:23–37CrossRefGoogle Scholar
  5. 5.
    Hatami M, Ganji DD, Gorji-Bandpy M (2015b) Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery. Energy Convers Manag 97:26–41CrossRefGoogle Scholar
  6. 6.
    Ghaebi H, Amidpour M, Karimkashi S, Rezayan O (2011) Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover. Int J Energy Res 35:697–709CrossRefGoogle Scholar
  7. 7.
    Ghaebi H, Saidi MH, Ahmadi P (2012) Exergoeconomic optimization of a trigeneration system for heating, cooling and power production purpose based on TRR method and using evolutionary algorithm. Appl Therm Eng 36:113–125CrossRefGoogle Scholar
  8. 8.
    Orhan MF, Dincer I, Naterer GF, Rosen MA (2010) Coupling of copper–chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy. Int J Hydrog Energy 35:1560–1574CrossRefGoogle Scholar
  9. 9.
    Uche J, Serra L, Valero A (2001) Thermoeconomic optimization of a dual-purpose power and desalination plant. Desalination 136:147–158CrossRefGoogle Scholar
  10. 10.
    Zamen Z, Amidpour M, Soufari SM (2009) Cost optimization of a solar humidification–dehumidification desalination unit using mathematical programming. Desalination 239:92–99CrossRefGoogle Scholar
  11. 11.
    Wang Y, Lior N (2006) Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems, part 1: the desalination unit and its combination with a steam-injected gas turbine power system. Desalination 196:84–104CrossRefGoogle Scholar
  12. 12.
    Alasfour FN, Darwish MA, Bin Amer AO (2005) Thermal analysis of ME-TVC+MEE desalination systems. Desalination 174:39–61CrossRefGoogle Scholar
  13. 13.
    Kahraman N, Cengel YA (2005) Exergy analysis of a MSF distillation plant. Energy Convers Manag 46:2625–2636CrossRefGoogle Scholar
  14. 14.
    Kafi F, Renaudin V, Alonso D, Hornut JM (2004) New MED plate desalination process: thermal performances. Desalination 166:53–62CrossRefGoogle Scholar
  15. 15.
    Shih H (2005) Evaluating the technologies of thermal desalination using low-grade heat. Desalination 182:461–469CrossRefGoogle Scholar
  16. 16.
    Ji J, Wang R, Li L, Ni HI (2007) Simulation and analysis of a single-effect thermal vapor compression desalination system at variable operation conditions. Chem Eng Technol 30:1633–1641CrossRefGoogle Scholar
  17. 17.
    Kamali RK, Mohebinia S (2008) Experience of design and optimization of multi-effects desalination systems in Iran. Desalination 222:639–645CrossRefGoogle Scholar
  18. 18.
    Kamali RK, Abbassi A, Sadough Vanini SA, Saffar Avval M (2008) Thermodynamic design and parametric study of MED-TVC. Desalination 222:596–604CrossRefGoogle Scholar
  19. 19.
    Ameri M, Seif Mohammadi S, Hosseini M, Seifi M (2009) Effect of design parameters on multi-effect desalination system specifications. Desalination 245:266–283CrossRefGoogle Scholar
  20. 20.
    Trostmann A (2009) Improved approach to steady state simulation of multi-effect distillation plants. Desalin Water Treat 7:93–110CrossRefGoogle Scholar
  21. 21.
    Shakib SE, Amidpour M, Aghanajafi C (2012a) Simulation and optimization of multi effect desalination coupled to a gas turbine plant with HRSG consideration. Desalination 285:366–376CrossRefGoogle Scholar
  22. 22.
    Shakib SE, Amidpour M, Aghanajafi C (2012b) A new approach for process optimization of a METVC desalination system. Desalin Water Treat 37:1–13CrossRefGoogle Scholar
  23. 23.
    Fiorini P, Sciubba E (2005) Thermoeconomic analysis of a MSF desalination plant. Desalination 182:39–51CrossRefGoogle Scholar
  24. 24.
    Sayyaadi H, Saffari A (2010) Thermoeconomic optimization of multi effect distillation desalination systems. Appl Energy 87:1122–1133CrossRefGoogle Scholar
  25. 25.
    Sayyaadi H, Saffari A, Mahmoodian A (2010) Various approaches in optimization of multi effects distillation desalination systems using a hybrid meta-heuristic optimization tool. Desalination 254:138–148CrossRefGoogle Scholar
  26. 26.
    Wang Y, Lior N (2007) Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems, part 2: the evaporative gas turbine based system and some discussions. Desalination 207:243–256CrossRefGoogle Scholar
  27. 27.
    Nafey AS (1998) Design and simulation of sea water thermal desalination plants. Ph.D. Thesis. Leeds University, UKGoogle Scholar
  28. 28.
    Ettouney H, El-Desouky E, Al-Roumi Y (1999) Analysis of mechanical vapor compression desalination process. Int J Energy Res 23:431–451CrossRefGoogle Scholar
  29. 29.
    Aly G (1983) Computer simulations of multi-effect FFE– VC systems for water desalination. Desalination 45:119–131CrossRefGoogle Scholar
  30. 30.
    Aly NH, El-Fiqi AK (2003) Mechanical vapor compression desalination systems: case study. Desalination 153:143–150CrossRefGoogle Scholar
  31. 31.
    El-Sayed YM (1999) Thermoeconomic of some options of large mechanical vapor mechanical vapor-compression units. Desalination 125:251–257MathSciNetCrossRefGoogle Scholar
  32. 32.
    Bejan A, Tsatsaronis G, Moran M (1996) Thermal design and optimization. John Wiley, NewYorkMATHGoogle Scholar
  33. 33.
    Darwish MA, El-Hadik AA (1986) The multi-effect boiling desalination system and its comparison with multi-stage flash system. Desalination 60:251–265CrossRefGoogle Scholar
  34. 34.
    Cengel AY, Boles AM (1994) Thermodynamics: an engineering approach. McGraw-Hill, New YorkGoogle Scholar
  35. 35.
    Herold KE, Radermacher R, Klein SA (1996) Absorption chillers and heat pump. CRC Press, Boca RatonGoogle Scholar
  36. 36.
    Kotas TJ (1995) The exergy method of thermal plant analysis. Krieger Publishing Company, MalabarGoogle Scholar
  37. 37.
    Kizilkan O, Sencan A, Kalogirou SA (2007) Thermoeconomic optimization of a LiBr absorption refrigeration system. Chem Eng Process 46:1376–1384CrossRefGoogle Scholar
  38. 38.
    Sencan A, Yakut KA, Kalogirou SA (2005) Exergy analysis of lithium bromide/water absorption systems. Renew Energy 30:645–657CrossRefGoogle Scholar
  39. 39.
    Korakiantis T, Wilson DG (1994) Methods for prediction the performance of Bryton-cycle engines. ASME J Eng Gas Turbines Power 166:381–388CrossRefGoogle Scholar
  40. 40.
    Kamali RK, Abbassi A, Sadough SA (2006) A simulation model and parametric study of MED–TVC process. In: EDS International Conference, EuroMed, p 203Google Scholar
  41. 41.
    Bereche RP, Gonzales R, Nebra SA (2010) Exergy calculation of lithium bromide–water solution and its application in the exergetic evaluation of absorption refrigeration systems LiBr-H2O. Int J Energy Res 36:166–181CrossRefGoogle Scholar
  42. 42.
    Mishra M, Das PK, Sarangi S (2004) Optimum design of cross flow plate-fin heat exchangers through genetic algorithm. Int J Heat Exch 5:379–401Google Scholar
  43. 43.
    Dincer I (1998) Energy and environmental impacts: present and future perspectives. Energy Sources 20:427–453CrossRefGoogle Scholar
  44. 44.
    Fath SH (2000) Desalination technology. El dar Elgameia, AlexandriaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations