Skip to main content
Log in

Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Water sorption isotherms from 5 up to 65 °C and air drying kinetics at 35, 45 and 55 °C of Mastocarpus stellatus seaweed were determined. Experimental sorption data were modelled using BET and Oswin models. A four-parameter model, based on Oswin model, was proposed to estimate equilibrium moisture content as function of water activity and temperature simultaneously. Drying experiments showed that water removal rate increased significantly with temperature from 35 to 45 °C, but at higher temperatures drying rate remained constant. Some chemical modifications of the hybrid carrageenans present in the seaweed can be responsible of this unexpected thermal trend. Experimental drying data were modelled using two-parameter Page model (n, k). Page parameter n was constant (1.31 ± 0.10) at tested temperatures, but k varied significantly with drying temperature (from 18.5 ± 0.2 10−3 min-n at 35 °C up to 28.4 ± 0.8 10−3 min-n at 45 and 55 °C). Drying experiments allowed the determination of the critical moisture content of seaweed (0.87 ± 0.06 kg water (kg d.b.)−1). A diffusional model considering slab geometry was employed to determine the effective diffusion coefficient of water during the falling rate period at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van de Velde F (2008) Structure and function of hybrid carrageenans. Food Hydrocolloid 22:727–734

    Article  Google Scholar 

  2. van de Velde F, Antipova AS, Rollema HS, Burova TV, Grinberg NV, Pereira L, Gilsenan PM, Tromp RH, Rudolph B, Grinberg VY (2005) The structure of k/i-hybrid carrageenans II. Coil-helix transition as a function of chain composition. Carbohydr Res 340:1113–1129

    Article  Google Scholar 

  3. Necas J, Bartosikova L (2013) Carrageenan: a review. Veterinarni Medicina 58:187–205

    Google Scholar 

  4. Kanmani P, Rihm J-W (2014) Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohyd Polym 106:190–199

    Article  Google Scholar 

  5. Liang W, Mao X, Peng X, Tang S (2014) Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity. Carbohyd Polym 101:776–785

    Article  Google Scholar 

  6. Lefnaoui S, Moulai-Mostefa N (2015) Polyelectrolyte complex based on carboxymethyl-kappa-carrageenan and Eudragit RL 30D as prospective carriers for sustained drug delivery. Chem Eng Res Des 97:165–174

    Article  Google Scholar 

  7. Prajapati VD, Maheriya PM, Jani GK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112

    Article  Google Scholar 

  8. Liu J, Zhan X, Wan J, Wang Y, Wang C (2015) Review for carrageenan-based pharmaceutical biomaterials: Favourable physical features versus adverse biological effects. Carbohyd Polym 121:27–36

    Article  Google Scholar 

  9. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Article  Google Scholar 

  10. Azevedo G, Torres MD, Sousa-Pinto I, Hilliou L (2015) Effect of pre-extraction alkali treatment on the chemical structure and gelling properties of extracted hybrid carrageenan from Chondrus crispus and Ahnfeltiopsis devoniensis. Food Hydrocolloid 50:150–158

    Article  Google Scholar 

  11. Pereira L, van de Velde F (2011) Portuguese carrageenophytes: carrageenan composition and geographic distribution of eight species (Gigartinales Rhodophyta). Carbohydr Polym 84:614–623

    Article  Google Scholar 

  12. Abreu MH, Pereira R, Yarish C, Buschmann AH, Sousa-Pinto I (2011) IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77–87

    Article  Google Scholar 

  13. Hung LD, Hori K, Nang HQ, Kha T, Hoa LT (2008) Seasonal changes in growth rate, carrageenan yield and lectin content in the red alga Kappaphycus alvarezii cultivated in Camranh Bay, Vietnam. J Appl Phycol 21:265–272

    Article  Google Scholar 

  14. Mendoza WG, Montaño MNE, Ganzon-Fortes ET, Villanueva RD (2002) Chemical and gelling profile of ice-ice infected carrageenan from Kappaphycus striatum (Schmitz) Doty “sacol” strain (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 14:409–418

    Article  Google Scholar 

  15. Mujumdar AS (2006) Handbook of industrial drying. CRC Press, Boca Raton

    Book  Google Scholar 

  16. Doymaz I (2016) Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat Mass Transf. doi:10.1007/s00231-016-1796-3

  17. Moreira R, Chenlo F, Torres MD (2016) Gelling characteristics and rheology of kappa/iota-hybrid carrageenans extracted from Mastocarpus stellatus dried at different temperatures. J Appl Phycol. doi:10.1007/s10811-016-0879-3

  18. Moreira R, Chenlo F, Torres MD, Silva C, Prieto DM, Sousa AMM, Hillou L, Gonçalves MP (2011) Drying kinetics of biofilms obtained from chestnut starch and carrageenan with and without glycerol. Dry Technol 29:1058–1065

    Article  Google Scholar 

  19. Lemus RA, Pérez M, Andrés A, Roco T, Tello CM, Vega A (2008) Kinetic study of dehydration and desorption isotherms of red alga Gracilaria. LWT-Food Sci Technol 41:1592–1599

    Article  Google Scholar 

  20. Fudholi A, Sopian K, Othman MY, Ruslan MH (2014) Energy and exergy analyses of solar drying system of red seaweed. Energ Buildings 68:121–129

    Article  Google Scholar 

  21. Barbosa-Cánovas GV, Vega-Mercado H (1996) Dehydration of foods. Springer, Netherlands

    Book  Google Scholar 

  22. Imeson A (2010) Food stabilisers, thickeners and gelling agents. Wiley-Blackwell, United Kingdom

    Google Scholar 

  23. Bell LN, Labuza TP (2000) Moisture sorption: practical aspects of isotherm measurement and use. American Association of Cereal Chemists, Minnesota

    Google Scholar 

  24. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Re Natl Stand 81:89–102

    Article  Google Scholar 

  25. Labuza TP, Knnane A, Chen JY (1985) Effect of temperature on the moisture sorption isotherm and water activity shift of two dehydrated foods. J Food Sci 50:385–392

    Article  Google Scholar 

  26. AOAC (1995) Official methods of analysis of AOAC international. Association of Official Analytical Chemists, Washington

    Google Scholar 

  27. Brunauer S, Deming L, Deming W, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732

    Article  Google Scholar 

  28. Oswin CR (1946) The kinetics of package life III. The isotherm. J Chem Ind 65:419–421

    Article  Google Scholar 

  29. Moreira R, Chenlo F, Sineiro J, Arufe S, Sexto S (2016) Water sorption isotherms and air drying kinetics of Fucus vesiculosus Brown seaweed. J Food Process Preserv. doi:10.1111/jfpp.12997

  30. Page G (1949) Factors influencing the maximum rates of air drying shelled corn in thin layers. MS Thesis, Purdue University, Purdue

    Google Scholar 

  31. Mayor L, Sereno AM (2004) Modelling shrinkage during convective drying of food materials: a review. J Food Eng 61:373–386

    Article  Google Scholar 

  32. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    MATH  Google Scholar 

  33. Hnini MC, Benchana M, El Hammioui M (2013) Study of the interaction between water and Gelidium sesquipedale (Rhodophyta). Part I: thermodynamic aspect of the sorption equilibrium. J Taiwan Inst Chem Eng 44:795–801

    Article  Google Scholar 

  34. Torres MD, Moreira R, Chenlo F, Vázquez MJ (2012) Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums. Carbohydr Polym 89:592–598

    Article  Google Scholar 

  35. Williams PA (2007) Handbook of industrial water soluble polymers. Blackwell Publishing Ltd, Oxford

    Book  Google Scholar 

  36. Larotonda FDS, Torres MD, Gonçalves MP, Sereno AM, Hilliou L (2015) Hybrid carrageenan-based formulations for edible film preparation: benchmarking with kappa carrageenan. J Appl Polym Sci. doi:10.1002/APP.42263

  37. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special references to the determination of surface-area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  38. Rouquerol J, Rouquerol F, Kenneth SW (1999) Adsorption by powders and porous solids: principles. Methodology and applications. Academic Press, New York

    Google Scholar 

  39. Rizvi S (1986) Thermodynamics of foods in dehydration. In: Rao M, Datta A, Rizvi S (eds) Engineering properties of food. Marcel Dekker, New York, pp 133–214

    Google Scholar 

  40. Fu BA, Chen MQ (2015) Thin-layer drying kinetics of lignite during hot air forced convection. Chem Eng Res Des 102:416–428

    Article  Google Scholar 

  41. Vega-Gálvez A, Tello-Ireland C, Lemus-Mondaca R (2007) Mathematical simulation of drying process of chilean gracilaria (Gracilaria chilensis). Ingeniare Rev chil Ing 15:55–64

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Ministerio de Economía y Competitividad of Spain and the European Regional Development Funds (ERDF) with the project CTQ-2013-43616/P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Moreira.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arufe, S., Torres, M.D., Chenlo, F. et al. Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan. Heat Mass Transfer 54, 177–184 (2018). https://doi.org/10.1007/s00231-017-2117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2117-1

Keywords

Navigation