Skip to main content
Log in

Review of interfacial layer’s effect on thermal conductivity in nanofluid

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An ordered liquid layer around the particle–liquid interface is called as interfacial layer. It has been observed that interfacial layer is an essential parameter for determining the effective thermal conductivity of nanofluids. The review attempts to summarize the prominent articles related to interfacial layer effect on the thermal conductivity of nanofluids. First section of the paper discusses about various experimental approaches used to describe the effect of interfacial layer. Second section deals with about the mathematical models and assumed values regarding the thickness of interfacial layer by several authors. A review of previous works featuring mathematical investigations and experimental approaches seem to be suggesting that, interfacial layer have dominating effect on the effective thermal conductivity of the nanofluids. Third section of the paper deals with various mathematical models available in open literature for interfacial layer thermal conductivity. In the last section, models for effective thermal conductivity of the nanofluids considering the interfacial layer and percentage deviations in the predictions of mathematical models have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

r p :

Particle radius

ρ :

Density

∇:

Divergence

t :

Thickness of interfacial layer

α :

Coefficient in thermal conductivity

ϕ :

Volume fraction

N A :

Avogadro constant

M f :

Molecular weight of liquid

k :

Thermal conductivity

agg :

Aggregating particles

c :

Combined nanoparticles

cl :

Particle cluster

e :

Equivalent particle

eff :

Effective

f :

Base fluid

l :

Interfacial layer

m :

Power law exponent

non-agg :

Non-aggregating particles

p :

Particle

r :

Variable radius

References

  1. Maxwell JC (1881) A treatise on electricity and magnetism, 2nd edn. Clarendon Press, Oxford, pp 435–441

    Google Scholar 

  2. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Int Mech Eng Congr Expos 66:99–105

    Google Scholar 

  3. Wang XQ, Mujumdar AS (2008) A review on nanofluids—part I: theoretical and numerical investigations. Braz J Chem Eng 25(4):613–630

    Article  Google Scholar 

  4. Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion and Al2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei 7(4):227–233

    Article  Google Scholar 

  5. Eastman JA, Choi SUS, Li S, Thompson LJ, Lee S (1997) Enhanced thermal conductivity through the development of nanofluids. Mater Res Soc Symp Proc 457:3–11

    Article  Google Scholar 

  6. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):280–289

    Article  Google Scholar 

  7. Tillman P, Hill JM (2007) Determination of nanolayer thickness for a nanofluid. Int Commun Heat Mass Transf 34(4):399–407

    Article  Google Scholar 

  8. Kumar DH, Patel HE, Kumar VRR, Sundararajan T, Pradeep T, Das SK (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93(14):144301(1-4)

    Article  Google Scholar 

  9. Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P (2008) Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf 51(5–6):1431–1438

    Article  MATH  Google Scholar 

  10. Paul G, Philip J, Raj B, Das PK, Manna I (2011) Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process. Int J Heat Mass Transf 54(15–16):3783–3788

    Article  Google Scholar 

  11. Anoop KB, Sundararajan T, Das SK (2009) Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf 52(9–10):2189–2195

    Article  MATH  Google Scholar 

  12. Chopkar M, Das PK, Manna I (2006) Synthesis and characterization of nanofluid for advanced heat transfer applications. Scr Mater 55(6):549–552

    Article  Google Scholar 

  13. Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87(15):153107–153109

    Article  Google Scholar 

  14. Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30(14–15):2213–2218

    Article  Google Scholar 

  15. Chang T-B, Syu S-C, Yang Y-K (2012) Effects of particle volume fraction on spray heat transfer performance of Al2O3-water nanofluid. Int J Heat Mass Transf 55(4):1014–1021

    Article  Google Scholar 

  16. Abareshi M, Goharshadi EK, Zebarjad SM, Fadafan HK, Youssefi A (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322(24):3895–3901

    Article  Google Scholar 

  17. Patel HE, Das SK, Sundarajan T, Nair AS, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83(14):2931–2933

    Article  Google Scholar 

  18. Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91(7):4568–4572

    Article  Google Scholar 

  19. Moosavi M, Goharshadi EK, Youssefi A (2010) Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids. Int J Heat Fluid Flow 31(4):599–605

    Article  Google Scholar 

  20. Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46(14):2665–2672

    Article  MATH  Google Scholar 

  21. Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21):4316–4318

    Article  Google Scholar 

  22. Xue Q-Z (2003) Model for effective thermal conductivity of nanofluids. Phys Lett A 307(5–6):313–317

    Article  Google Scholar 

  23. Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043

    Article  Google Scholar 

  24. Yu W, Choi SUS (2003) The Role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. J Nanopart Res 5:167–171

    Article  Google Scholar 

  25. Israelachvili JN (2011) Intermolecular and surface forces: revised, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  26. Li L, Zhang Y, Ma H, Yang M (2008) An investigation of molecular layering at the liquid-solid interface in nanofluids by molecular dynamics simulation. Phys Lett A 372:4541–4544

    Article  MATH  Google Scholar 

  27. Suganthi KS, Parthasarathy M, Rajan KS (2013) Liquid-layering induced, temperature-dependent thermal conductivity enhancement in ZnO–propylene glycol nanofluids. Chem Phys Lett 561–562:120–124

    Article  Google Scholar 

  28. Cui W, Shen Z, Yang J, Wu S (2016) Molecular dynamics simulation on the microstructure of absorption layer at the liquid–solid interface in nanofluids. Int Commun Heat Mass Transf 71:75–85

    Article  Google Scholar 

  29. Kang H, Zhang Y, Yang M (2011) Molecular dynamics simulation of thermal conductivity of Cu–Ar nanofluid using EAM potential for Cu–Cu interactions. Appl Phys A 103:1001–1008

    Article  Google Scholar 

  30. Xie H, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf 48(14):2926–2932

    Article  MATH  Google Scholar 

  31. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252–2254

    Article  Google Scholar 

  32. Eknath HP (2007) Experimental and theoretical investigation on thermal conductivity enhancement of nanofluids. Ph.D. Thesis, Indian Institute of Technology Madras, India

  33. Prasher R (2009) Acoustic mismatch model for thermal contact resistance of van der Waals contacts. Appl Phys Lett 94:041905(1-3)

    Article  Google Scholar 

  34. Gerardi C, Cory D, Buongiorno J, Hu L-W, Mckrell T (2009) Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Appl Phys Lett 95:253104(1-3)

    Article  Google Scholar 

  35. Neyts EC, Brault P (2016) Molecular dynamics simulations for plasma-surface interactions. Plasma Process Polym. doi:10.1002/ppap.201600145

    Google Scholar 

  36. Hu C, Bai M, Lv J, Wang P, Zhang L, Li X (2014) Molecular dynamics simulation of nanofluid’s flow behaviors in the near-wall model and main flow model. Microfluid Nanofluid 17:581–589

    Article  Google Scholar 

  37. Li L, Zhang Y, Ma H, Yang M (2010) Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids. J Nanopart Res 12:811–821

    Article  Google Scholar 

  38. Eapen J, Li J, Yip S (2006) Probing transport mechanisms in nanofluids by molecular dynamics simulations. In: Proceeding of the 18th National and 7th ISHMT–ASME heat and mass transfer conference, IIT Guwahati, India

  39. Sarkar S, Selvam RP (2007) Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. J Appl Phys 102:074302(1-7)

    Google Scholar 

  40. Liang Z, Tsai HL (2011) Thermal conductivity of interfacial layers in nanofluids. Phys Rev E 83:041602(1-8)

    Google Scholar 

  41. Xue Q, Xu W-M (2005) A model of thermal conductivity of nanofluids with interfacial shells. Mater Chem Phys 90(2–3):298–301

    Article  Google Scholar 

  42. Yu W, Choi SUS (2004) The role of interfacial layers in the enhanced thermal conductivities of nanofluids: A renovated Hamilton–Crosser model. J Nanopart Res 6(4):355–361

    Article  Google Scholar 

  43. Yu W, Choi SUS (2005) An effective conductivity model of nanofluids with a cubical arrangement of spherical particles. J Nanosci Nanotechnol 5(4):580–586

    Article  Google Scholar 

  44. Ren Y, Xie H, Cai A (2005) Effective thermal conductivity of nanofluids containing spherical nanoparticles. J Phys D Appl Phys 38(21):3958–3961

    Article  Google Scholar 

  45. Yu C-J, Richter AG, Datta A, Durbin MK, Dutta P (1999) Observation of molecular layering in thin films using X-ray reflectivity. Phys Rev Lett 82(11):2326–2329

    Article  Google Scholar 

  46. Rizvi IH, Jain A, Ghosh SK, Mukherjee PS (2013) Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer. Heat Mass Transf 49(4):595–600

    Article  Google Scholar 

  47. Berger F, Dekany I (1998) Variable thickness of the liquid sorption layers on solid surfaces. J Colloids Surf A Physiochem Eng Asp 141(3):305–317

    Article  Google Scholar 

  48. Li ZH, Gong YJ, Pu M, Wu D, Sun YH, Wang J, Liu Y, Dong BZ (2001) Determination of interface layer thickness of a pseudo two-phase system by extension of the Debye equation. J Phys D Appl Phys 34(14):2085–2088

    Article  Google Scholar 

  49. Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47(5):560–568

    Article  Google Scholar 

  50. Kamalvand M, Karami M (2013) A linear regularity between thermal conductivity enhancement and fluid adsorption in nanofluids. Int J Therm Sci 65:189–195

    Article  Google Scholar 

  51. Keshavazi E, Kamalvand M (2009) Energy effect on the structure and thermodynamic properties of nanoconfined fluids (a density functional theory study). J Phys Chem B 113(16):5493–5499

    Article  Google Scholar 

  52. Tso CY, Fu SC, Chao CYH (2014) A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness. Int J Heat Mass Transf 70:202–214

    Article  Google Scholar 

  53. Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8(2):245–254

    Article  Google Scholar 

  54. Nsofor EC, Gadge T (2011) Investigations on the nanolayer heat transfer in nanoparticles-in-liquid suspensions. ARPN J Eng Appl Sci 6(1):21–28

    Google Scholar 

  55. Kole M, Dey TK (2011) Effect of aggregation on the viscosity of copper oxide–gear oil nanofluids. Int J Therm Sci 50:1741–1747

    Article  Google Scholar 

  56. Jiang H, Li H, Xu Q, Shi L (2014) Effective thermal conductivity of nanofluids considering interfacial nano-shells. Mater Chem Phys 148(1–2):195–200

    Article  Google Scholar 

  57. Feng Y, Yu B, Xu P, Zou M (2007) The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys 40(10):3164–3171

    Article  Google Scholar 

  58. Mintsa HA, Roy G, Nguyen CT, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 48(2):363–371

    Article  Google Scholar 

  59. Bruggeman DAG (1935) Berechnung berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizit¨atskonstanten und leitf¨ahigkeiten der mischk¨orper aus isotropen substanzen. Ann Phys 416(7):636–664

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotia, A., Borkakoti, S., Deval, P. et al. Review of interfacial layer’s effect on thermal conductivity in nanofluid. Heat Mass Transfer 53, 2199–2209 (2017). https://doi.org/10.1007/s00231-016-1963-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1963-6

Keywords

Navigation