Skip to main content
Log in

Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k– ε model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7–10 %. In addition, this turbulent k– ε model provided a better understanding of the transport phenomenon inside the dryer and sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C :

Moisture content (kg/m3)

C 1, C 2 :

Constants in the turbulence model

C p :

Specific heat capacity (J/kg K)

D :

Mass diffusion coefficient (m2/s)

d + c :

Dimensionless mixing length

d c :

Distance to the wall

g :

Gravity (m/s)

G :

Production of kinetic turbulent energy (N/m2 s)

h :

Convective heat transfer coefficient (W/m2 K)

h :

Convection heat transfer coefficient (W/m2 °C)

k :

Thermal conductivity (W/m K)

K :

von Karman constant (0.4187)

K m :

Convection mass transfer coefficient (m/s)

l :

Maximum dimension in each coordinate (m)

MR :

Moisture ratio (dimensionless)

n :

Number of data

p :

Pressure (Pa)

Pr :

Prandtl number

R :

Ideal gas constant (J/K mol)

S c :

Independent source term

Sc :

Schmidt number

S p :

Dependent source term

T :

Temperature (K)

t :

Time (s)

u :

Velocity (m/s)

U c :

Tangential velocity to the wall outside of laminar sub-layer (m/s)

U f :

Friction velocity on the wall (m/s)

x, y, z :

Coordinates (m)

μ :

Dynamic viscosity (N s/m2)

κ :

Turbulent kinetic energy (m2/s2)

ψ :

Porosity of food

μ t :

Turbulent viscosity (N s/m2)

d :

Indicator of gravity direction

σ t :

Turbulent Prandtl number

τ w :

Shear

ν :

Kinematic laminar viscosity (m2/s)

ε :

Dissipation rate of turbulent kinetic energy (m2/s2)

ϕ :

Dependent variable

α :

Thermal diffusivity (m2/s)

ρ :

Density (kg/m3)

t :

Time step (s)

ψ :

Porosity (dimensionless)

o :

Initial conditions

air :

Air properties

eff :

Food effective property

s :

Solid (food)

f :

Fluid (air)

i, j, k :

Vector direction

num :

Numerical data

exp :

Experimental data

max :

Maximum experimental value

min :

Minimum experimental value

–:

Averaged value

→:

Vector

W :

Outer boundary of food (wall)

References

  1. Demiray E, Tulek Y (2014) Drying characteristics of garlic (Allium sativum L.) slices in a convective hot air dryer. Heat Mass Transf 50:779–786

    Article  Google Scholar 

  2. Demiray E, Tulek Y (2012) Thin-layer drying of tomato (Lycopersicum esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer. Heat Mass Transf 48:841–847

    Article  Google Scholar 

  3. Ozgen F (2014) Experimental investigation of drying characteristics of cornelian cherry fruits (Cornus mas L.). Heat Mass Transf 51:343–352

    Article  Google Scholar 

  4. Chandra Mohan V, Talukdar P (2012) Design of an experimental set up for convective drying: experimental studies at different drying temperature. Heat Mass Transf 49:31–40

    Article  Google Scholar 

  5. Xia B, Sun D-W (2002) Applications of computational fluid dynamics (CFD) in the food industry: a review. Comput Electron Agric 34:5–24

    Article  Google Scholar 

  6. Zare D, Minaei S, Zadeh M (2006) Computer simulation of rough rice drying in a batch dryer. Energy Conver Manag 47:3241–3254

    Article  Google Scholar 

  7. Kaya A, Aydin O, Dincer I (2006) Numerical modeling of heat and mass transfer during forced convection drying of rectangular moist objects. Int J Heat Mass Transf 49:3094–3103

    Article  MATH  Google Scholar 

  8. Aversa M, Curcio S, Calabro V, Iorio G (2007) An analysis of the transport phenomena occurring during food drying process. J Food Eng 78:922–932

    Article  Google Scholar 

  9. Datta A (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes I: problem formulations. J Food Eng 80:80–95

    Article  Google Scholar 

  10. Curcio S, Aversa M, Calabro V (2008) Simulation of food drying: FEM analysis and experimental validation. J Food Eng 87:541–553

    Article  Google Scholar 

  11. Janjai S, Lamlert N, Intawee P, Mahayothee B, Haewsungcharern M, Bala B, Muller J (2008) Finite elements simulation of drying of mango. Biosyst Eng 99:523–531

    Article  Google Scholar 

  12. Kaya A, Aydin O, Dincer I (2008) Experimental and numerical investigation of heat and mass transfer drying of Hayward kiwi fruits (Actinidia deliciosa Planch). J Food Eng 88:323–330

    Article  Google Scholar 

  13. Nilnont W, Thepa S, Janjai S, Kasayapanand N, Thamrongmas C, Bala B (2012) Finite elements simulation for coffee (Coffea arabica) drying. Food Bioprod Process 90:341–350

    Article  Google Scholar 

  14. Wang L, Sun D-W (2003) Recent developments in numerical modeling of heating and cooling processes in the food industry—a review. Trends Food Sci Technol 14:408–423

    Article  Google Scholar 

  15. Lecorvaisier E, Darche S, da Silva Z, da Silva C (2010) Theoretical model of a drying system including turbulence aspects. J Food Eng 96:365–373

    Article  Google Scholar 

  16. Sabarez H (2012) Computational modelling of the transport phenomena occurring during convective drying of prunes. J Food Eng 111:279–288

    Article  Google Scholar 

  17. Chr Lamnatou, Papanicolaou E, Belessiotis V, Kyriakis N (2009) Conjugate heat and mass transfer from a drying rectangular cylinder in confined air flow. Numer Heat Transf Part A 56:379–405

    Article  Google Scholar 

  18. Lemus-Mondaca R, Vega-Gálvez A, Moraga N (2011) Computational simulation and developments applied to food thermal processing. Food Eng Rev 3:121–135

    Article  Google Scholar 

  19. Hussain M, Dincer I (2003) Numerical simulation of two-dimensional heat and moisture transfer during drying of a rectangular object. Numer Heat Transf Part A 43:867–878

    Article  MATH  Google Scholar 

  20. Oztop H, Kavak A (2008) Numerical and experimental analysis of moisture transfer for convective drying of some products. Int Comm Heat Mass Transf 35:169–177

    Article  Google Scholar 

  21. Villa-Corrales L, Flores J, Xamán J, García E (2010) Numerical and experimental analysis of heat and moisture transfer during drying of Ataulfo mango. J Food Eng 98:198–206

    Article  Google Scholar 

  22. Moraga N, Jauriat L, Lemus-Mondaca R (2012) Heat and mass transfer in conjugated food freezing/air natural convection. Int J Refrig 35:880–889

    Article  Google Scholar 

  23. Zambra C, Moraga N, Rosales C, Lictevouta C (2012) Unsteady 3D heat and mass transfer diffusion coupled with turbulent forced convection for compost piles with chemical and biological reactions. Int J Heat Mass Transf 55:6695–6704

    Article  Google Scholar 

  24. Davidson P (2000) Turbulence. Oxford University Press, Oxford

    Google Scholar 

  25. Launder B, Spalding D (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Article  MATH  Google Scholar 

  26. Tsilingiris P (2008) Thermophysical and transport properties of humid air at temperature range between 0 and 100 °C. Energy Conver Manag 49:1098–1110

    Article  Google Scholar 

  27. Lemus-Mondaca R, Betoret N, Vega-Galvéz A, Lara E (2009) Dehydration characteristics of papaya (Carica pubenscens): determination of equilibrium moisture content and diffusion coefficient. J Food Process Eng 32:645–663

    Article  Google Scholar 

  28. AOAC (1990) Official method of analysis, methods 934.06 and 942.15 A. Association of Official Analytical Chemists, Arlington, VA

  29. Coimbra J, Gabas A, Minim L, Rojas E, Telis V, Telis-Romero J (2006) Density, heat capacity and thermal conductivity of liquid egg products. J Food Eng 74:186–190

    Article  Google Scholar 

  30. Krokida M, Maroulis Z (2000) Quality changes during drying of foods materials. In: Mujumdar AS (ed) Drying technology in agricultural and food sciences. Science Publishers, Endfield, pp 61–106

    Google Scholar 

  31. Zanoelo E, Benincá V, Ribeiro E (2011) Thermophysical properties of mate leaves: experimental determination and theoretical effect of moisture content. J Food Process Eng 34:2124–2136

    Article  Google Scholar 

  32. Versteeg H, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite, vol method. Longman Scientific Technical Press, Addison Wesley Longman Ltd, London

    Google Scholar 

  33. Patankar S (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington

    MATH  Google Scholar 

  34. Kurozawa L, Park K, Azonbel P (2008) Thermal conductivity and thermal diffusivity of papaya (Carica papaya L.) and Cashew apple (Anacardium occidentale L.). Braz J Food Technol 11:78–85

    Google Scholar 

  35. Ikegwu O, Ekwu F (2009) Thermal and physical properties of some tropical fruits and their juices in Nigeria. J Food Technol 7:38–42

    Google Scholar 

  36. Lemus-Mondaca R, Zambra C, Vega-Gálvez A, Moraga N (2013) Coupled 3D heat and mass transfer model for numerical analysis of drying process in papaya slices. J Food Eng 116:109–117

    Article  Google Scholar 

  37. Smolka J, Nowak A, Rybarz D (2010) Improved 3-D temperature uniformity in a laboratory drying oven based on experimentally validated CFD computations. J Food Eng 97:373–383

    Article  Google Scholar 

  38. Amanlou Y, Zomorodian A (2010) Applying CFD for designing a new fruit cabinet dryer. J Food Eng 101:8–15

    Article  Google Scholar 

  39. Kaya A, Aydın O, Dincer I (2007) Heat and mass transfer modeling of recirculating flows during air drying of moist objects for various dryer configurations. Numer Heat Transf Part A 53:18–34

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge to FONDECYT no. 1140074 Project and DIULS Multidisciplinar PMU13331 Project for providing financial support for the publication of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto A. Lemus-Mondaca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemus-Mondaca, R.A., Vega-Gálvez, A., Zambra, C.E. et al. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer. Heat Mass Transfer 53, 11–24 (2017). https://doi.org/10.1007/s00231-016-1799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1799-0

Keywords

Navigation