Skip to main content
Log in

Thin-layer drying of tomato (Lycopersicum esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The effects of different drying temperatures on the drying kinetics of tomato slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 1.015 × 10−9 to 2.650 × 10−9 ms−1over the temperature range studied, and activation energy was 22.981 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a, b, c, n :

Constants of models

k, k 0, k 1 :

Rate constants in models, h−1

MR:

Moisture ratio

D eff :

Effective diffusivity (m2 s−1)

D 0 :

Pre-exponential factor of the Arrhenius equation (m2 s−1)

E a :

Activation energy (kJ mol−1)

L :

Half-thickness of the slab in samples, m

M t :

Moisture content, g water/g dry matter

M e :

Equilibrium moisture content, g water/g dry matter

M 0 :

Initial moisture content, g water/g dry matter

N :

Number of observations

n :

Positive integer, constant

R 2 :

Correlation coefficient

RMSE:

Root mean square error

T :

Temperature, °C

t :

Drying time, min

χ2 :

Reduced chi-square

z :

Number of constants in models

References

  1. Durance TD, Wang JH (2002) Energy consumption, density and rehydration rate of vacuum microwave and hot-air convection dehydrated tomatoes. J Food Sci 67:2212–2216

    Article  Google Scholar 

  2. Andritsos N, Dalampakis P, Kolios N (2003) Use of geothermal energy for tomato drying. GHC Bull 24:9–13 (March)

    Google Scholar 

  3. Doymaz I (2007) Air drying characteristics of tomatoes. J Food Eng 78:1291–1297

    Article  Google Scholar 

  4. Ertekin C, Yaldiz O (2004) Drying of eggplant and selection of a suitable thin layer drying model. J Food Eng 63:349–359

    Article  Google Scholar 

  5. Giovanelli G, Zanoni B, Lavelli V, Nani R (2002) Water sorption, drying and antioxidant properties or dried tomato products. J Food Eng 52:135–141

    Article  Google Scholar 

  6. Toor RK, Savage GP (2006) Effect of semi-drying on the antioxidant components of tomatoes. Food Chem 94:90–97

    Article  Google Scholar 

  7. Veillet S, Busch J, Savage G (2009) Acceptability and antioxidant properties of a semi-dried and smoked tomato product. J Food Agric Environ 7(2):70–75

    Google Scholar 

  8. Koca N, Burdurlu HS, Karadeniz F (2007) Kinetics of colour changes in dehydrated carrots. J Food Eng 78:449–455

    Article  Google Scholar 

  9. Sahin AZ, Dincer I (2005) Prediction of drying times for irregular shaped multi-dimensional objects. J Food Eng 71(1):119–126

    Article  Google Scholar 

  10. Ozdemir M, Devres YO (1999) The thin layer drying characteristics of hazelnuts during roasting. J Food Eng 42:225–233

    Article  Google Scholar 

  11. McMinn WAM (2006) Thin-layer modeling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. J Food Eng 72:113–123

    Article  Google Scholar 

  12. Kaleemullah S, Kailappan R (2005) Drying kinetics of red chilies in rotary dryer. Biosyst Eng 92:15–23

    Article  Google Scholar 

  13. Akpinar EK, Bicer Y (2005) Modeling of the drying of eggplants in thin-layers. Int J Food Sci Technol 40:273–281

    Article  Google Scholar 

  14. Yaldiz O, Ertekin C (2001) Thin layer solar drying of some different vegetables. Drying Technol 19:583–596

    Article  Google Scholar 

  15. Doymaz I (2005) Drying characteristics and kinetics of okra. J Food Eng 69:275–279

    Article  Google Scholar 

  16. Maskan M, Gogus F (1998) Sorption isotherms and drying characteristics of mulberry (Morus alba). J Food Eng 37:437–449

    Article  Google Scholar 

  17. Sacilik K, Keskin R, Elicin KA (2006) Mathematical modeling of solar tunnel drying of thin layer organic tomato. J Food Eng 73:231–238

    Article  Google Scholar 

  18. AOAC (1990) Official method of analysis. Association of Official Analytical Chemists (No. 934.06), Arlington

    Google Scholar 

  19. Tabatabaee R, Jayas DS, White NDG (2004) Thin-layer drying and rewetting characteristics of buckwheat. Can Biosyst Eng 46(3):19–24

    Google Scholar 

  20. Sarsavadia PN, Sawhney RL, Pangavhane DR, Singh SP (1999) Drying behavior of brined onion slices. J Food Eng 46:219–226

    Article  Google Scholar 

  21. Doymaz I, Pala M (2002) The effects of dipping pretreatments on air-drying rates of the seedless grapes. J Food Eng 52:413–417

    Article  Google Scholar 

  22. Simal S, Femenia A, Garau MC, Rossello C (2005) Use of exponential, page’s and diffusional models to simulate the drying kinetics of kiwi fruit. J Food Eng 66:323–328

    Article  Google Scholar 

  23. Doymaz I (2007) The kinetics of forced convective air-drying of pumpkin slices. J Food Eng 79:243–248

    Article  Google Scholar 

  24. Bruce DM (1985) Exposed-layer barley drying, three models fitted to new data up to 150°C. J Agric Eng Res 32:337–347

    Article  Google Scholar 

  25. Yaldiz O, Ertekin C, Uzun HI (2001) Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26:457–465

    Article  Google Scholar 

  26. Togrul IT, Pehlivan D (2004) Modeling of thin layer drying kinetics of some fruits under open-air sun drying process. J Food Eng 65:413–425

    Article  Google Scholar 

  27. Sharma GP, Verma RC, Pathare PB (2005) Thin layer infrared radiation drying of onion slices. J Food Eng 67:361–366

    Article  Google Scholar 

  28. Saravacos GD, Maroulis ZB (2001) Transport properties of foods. Marcel Dekker Inc., New York

    Google Scholar 

  29. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, London

    Google Scholar 

  30. Lomauro CJ, Bakshi AS, Labuza TP (1985) Moisture transfer properties of dry and semimoist foods. J Food Sci 50:397–400

    Article  Google Scholar 

  31. Akpinar EK (2006) Mathematical modeling of thin layer drying process under open sun of some aromatic plants. J Food Eng 77:864–870

    Article  Google Scholar 

  32. Madamba PS, Driscoll RH, Buckle KA (1996) The thin layer drying characteristics of garlic slices. J Food Eng 29:75–97

    Article  Google Scholar 

  33. San JN, Lozano M, Garcia PP, Mulet A (2003) Dehydration kinetics of red pepper (Capsicum annuum L var Jaranda). J Sci Food Agric 83:697–701

    Article  Google Scholar 

  34. Fang S, Wang Z, Hu X (2009) Hot air drying of whole fruit Chinese jujube (Zizyphus jujube Miller) thin layer mathematical modeling. Int J Food Sci Technol 44:1818–1824

    Article  Google Scholar 

  35. Akpinar EK, Bicer Y, Yildiz C (2003) Thin layer drying of red pepper. J Food Eng 59:99–104

    Article  Google Scholar 

  36. Sogi DS, Shivhare US, Bawa AS, Garg SK (2003) Water sorption isotherms and drying characteristics of tomato seeds. Biosyst Eng 84(3):297–301

    Article  Google Scholar 

  37. Kaur D, Wani AA, Sogi DS, Shivhare US (2006) Sorption isotherms and drying characteristics of tomato peel isolated from tomato pomace. Drying Technol 24:1515–1520

    Article  Google Scholar 

  38. Chawla C, Kaur D, Oberoi DPS, Sogi DS (2008) Drying characteristics, sorption isotherms, and lycopene retention of tomato pulp. Drying Technol 26:1257–1264

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Pamukkale University Scientific Researches Unit (Project No: 2008MHF004) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahya Tulek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demiray, E., Tulek, Y. Thin-layer drying of tomato (Lycopersicum esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer. Heat Mass Transfer 48, 841–847 (2012). https://doi.org/10.1007/s00231-011-0942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0942-1

Keywords

Navigation