Skip to main content
Log in

Exergetic simulation of a combined infrared-convective drying process

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Optimal design and performance of a combined infrared-convective drying system with respect to the energy issue is extremely put through the application of advanced engineering analyses. This article proposes a theoretical approach for exergy analysis of the combined infrared-convective drying process using a simple heat and mass transfer model. The applicability of the developed model to actual drying processes was proved using an illustrative example for a typical food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A:

Surface area (m2)

C :

Specific heat of product (kJ/kg K)

\(D_{eff}\) :

Effective moisture diffusivity of water (m2/s)

E :

Energy rate (kJ/s)

ex :

Specific exergy (kJ/kg)

\(\dot{E}x\) :

Exergy rate (kJ/s)

F :

Shape factor (–)

\(\overline{h}_{m}\) :

Mass transfer coefficient (m/s)

\(\overline{h}_{T}\) :

Heat transfer coefficient (W/m2 K)

IR :

Infrared radiation energy (kJ/s)

J :

Junction

k :

Thermal conductivity of air (kW/m K)

D :

Diameter (m)

m :

Mass (kg)

M :

Moisture concentration (kg water/m3)

MC :

Moisture content (kg water/kg dry matter)

\(\dot{m}\) :

Mass flow rate (kg/s)

P :

Air pressure (kPa)

\(\dot{Q}\) :

Heat transfer rate (kJ/s)

R :

Constant (kJ/kg K)

t :

Drying time (s)

T :

Temperature (K or °C)

U :

Overall heat transfer coefficient (kW/m2 K)

v :

Air velocity (m/s)

V :

Volume (m3)

X :

Mass fraction (–)

Le :

Lewis number

Nu :

Nusselt number

Pr :

Prandtl number

Re :

Reynolds number

t :

Simulation time step (s)

α :

Thermal diffusivity (m2/s)

β :

Energy quality factor (–)

ε :

Emissivity factor (–)

λ :

Latent heat of water vaporization (kJ/kg)

μ :

Dynamic viscosity of air (Pa s)

ρ :

Density (kg/m3)

σ :

Stephan–Boltzman constant (W/m2 K4)

υ :

Kinematic viscosity (m2/s)

ϕ :

Hydraulic diameter (m)

ψ :

Exergy efficiency (–)

ω :

Humidity ratio of air (kg water/kg dry air)

0:

Dead state

1:

Wet product

2:

Inlet air

3:

Dried product

4:

Outlet air

a :

Air

abs :

Absorbed

amb :

Ambient

ash :

Ash

carbo :

Carbohydrate

d :

Dry matter

DC :

Drying chamber

des :

Destruction

emit :

Emitted

ev :

Evaporation

ex :

Exergy

eq :

Equivalent

fat :

Fat

fiber :

Fiber

i :

Component

IR :

Infrared source

l :

Loss

M :

Material

o :

Initial state

pro :

Protein

rad :

Radiated

ref :

Reflected

t :

Drying time

tran :

Transmitted

v :

Vapor

w :

Water

References

  1. Aghbashlo M, Kianmehr MH, Samimi-Akhijahani H (2008) Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Convers Manag 49(10):2865–2871

    Article  Google Scholar 

  2. Nimmol C, Devahastin S, Swasdisevi T, Soponronnarit S (2007) Drying of banana slices using combined low–pressure superheated steam and far–infrared radiation. J Food Eng 81(3):624–633

    Article  Google Scholar 

  3. Aghbashlo M, Mobli H, Rafiee S, Madadlou A (2013) A review on exergy analysis of drying processes and systems. Renew Sust Energy Rev 22:1–22

    Article  Google Scholar 

  4. Dincer I (2002) On energetic, exergetic and environmental aspects of drying systems. Int J Energy Res 26(8):717–727

    Article  Google Scholar 

  5. Dincer I, Sahin AZ (2004) A new model for thermodynamic analysis of a drying process. Int J Heat Mass Transf 47(4):645–652

    Article  MATH  Google Scholar 

  6. Aghbashlo M, Kianmehr MH, Arabhosseini A (2008) Energy and exergy analyses of thin-layer drying of potato slices in a semi-industrial continuous band dryer. Dry Technol 26(12):1501–1508

    Article  Google Scholar 

  7. Aghbashlo M, Kianmehr MH, Arabhosseini A (2009) Performance analysis of drying of carrot slices in a semi-industrial continuous band dryer. J Food Eng 91(1):99–108

    Article  Google Scholar 

  8. Ozgener L, Ozgener O (2009) Parametric study of the effect of reference state on energy and exergy efficiencies of a small industrial pasta drying process. Int J Exergy 6(4):477–490

    Article  Google Scholar 

  9. Cay A, Tarakçıoğlu I, Hepbasli A (2009) A study on the exergetic analysis of continuous textile dryers. Int J Exergy 6(3):422–439

    Article  Google Scholar 

  10. Dincer I (2011) Exergy as a potential tool for sustainable drying systems. Sustain Cities Soc 1(2):91–96

    Article  Google Scholar 

  11. Syahrul S, Hamdullahpur F, Dincer I (2002) Exergy analysis of fluidized bed drying of moist particles. Exergy Int J 2(2):87–98

    Article  Google Scholar 

  12. Syahrul S, Dincer I, Hamdullahpur F (2003) Thermodynamic modeling of fluidized bed drying of moist particles. Int J Therm Sci 42(7):691–701

    Article  Google Scholar 

  13. Nazghelichi T, Kianmehr MH, Aghbashlo M (2010) Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy 35(12):4679–4684

    Article  Google Scholar 

  14. Nazghelichi T, Aghbashlo M, Kianmehr MH, Omid M (2011) Prediction of energy and exergy of carrot cubes in a fluidized bed dryer by artificial neural networks. Dry Technol 29(3):295–307

    Article  Google Scholar 

  15. Khanali M, Aghbashlo M, Rafiee S, Jafari A (2013) Exergetic performance assessment of plug flow fluidised bed drying process of rough rice. Int J Exergy 13(3):387–408

    Article  Google Scholar 

  16. Ranjbaran M, Zare D (2013) Simulation of energetic-and exergetic performance of microwave-assisted fluidized bed drying of soybeans. Energy 59:484–493

    Article  Google Scholar 

  17. Özahi E, Demir H (2013) A model for the thermodynamic analysis in a batch type fluidized bed dryer. Energy 59:617–624

    Article  Google Scholar 

  18. Aghbashlo M, Mobli H, Rafiee S, Madadlou A (2012) Energy and exergy analyses of the spray drying process of fish oil microencapsulation. Biosyst Eng 111(2):229–241

    Article  Google Scholar 

  19. Aghbashlo M, Mobli H, Madadlou A, Rafiee S (2012) Influence of spray dryer parameters on exergetic performance of microencapsulation process. Int J Exergy 10(3):267–289

    Article  Google Scholar 

  20. Aghbashlo M, Mobli H, Rafiee S, Madadlou A (2012) Optimization of emulsification procedure for mutual maximizing the encapsulation and exergy efficiencies of fish oil microencapsulation. Powder Technol 225:107–117

    Article  Google Scholar 

  21. Aghbashlo M, Mobli H, Madadlou A, Rafiee S (2012) Integrated optimization of fish oil microencapsulation process by spray drying. J Microencapsul 29(8):790–804

    Article  Google Scholar 

  22. Aghbashlo M, Mobli H, Rafiee S, Madadlou A (2012) The use of artificial neural network to predict exergetic performance of spray drying process: a preliminary study. Comput Electron Agric 88:32–43

    Article  Google Scholar 

  23. Erbay Z, Koca N (2012) Investigating the effects of operating conditions on the exergetic performance of a pilot–scale spray–drying system. Int J Exergy 11(3):302–321

    Article  Google Scholar 

  24. Erbay Z, Koca N, Kaymak-Ertekin F, Ucuncu M (2014) Optimization of spray drying process in cheese powder production. Food Bioprod Process. doi:10.1016/j.fbp.2013.12.008

    Google Scholar 

  25. Catton W, Carrington G, Sun Z (2011) Exergy analysis of an isothermal heat pump dryer. Energy 36(8):4616–4624

    Article  Google Scholar 

  26. Gungor A, Erbay Z, Hepbasli A (2012) Exergoeconomic (thermoeconomic) analysis and performance assessment of a gas engine–driven heat pump drying system based on experimental data. Dry Technol 30(1):52–62

    Article  Google Scholar 

  27. Erbay Z, Hepbasli A (2013) Advanced exergy analysis of a heat pump drying system used in food drying. Dry Technol 31(7):802–810

    Article  Google Scholar 

  28. Midilli A, Kucuk H (2003) Energy and exergy analyses of solar drying process of pistachio. Energy 28(6):539–556

    Article  Google Scholar 

  29. Tiwari GN, Das T, Chen CR, Barnwal P (2009) Energy and exergy analyses of greenhouse fish drying. Int J Exergy 6(5):620–636

    Article  Google Scholar 

  30. Akbulut A, Durmuş A (2010) Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer. Energy 35(4):1754–1763

    Article  Google Scholar 

  31. Sami S, Etesami N, Rahimi A (2011) Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results. Energy 36(5):2847–2855

    Article  Google Scholar 

  32. Chowdhury MMI, Bala BK, Haque MA (2011) Energy and exergy analysis of the solar drying of jackfruit leather. Biosyst Eng 110(2):222–229

    Article  Google Scholar 

  33. Liu Y, Zhao Y, Feng X (2008) Exergy analysis for a freeze-drying process. Appl Therm Eng 28(7):675–690

    Article  Google Scholar 

  34. Liapis AI, Bruttini R (2008) Exergy analysis of freeze drying of pharmaceuticals in vials on trays. Int J Heat Mass Transf 51(15):3854–3868

    Article  MATH  Google Scholar 

  35. Dikmen E, Yakut AK, Şahin AŞ (2012) Energy and exergy analyses of vacuum drying process of pine timbers. Int J Exergy 11(2):137–151

    Article  Google Scholar 

  36. Meeso N, Nathakaranakule A, Madhiyanon T, Soponronnarit S (2007) Modelling of far-infrared irradiation in paddy drying process. J Food Eng 78(4):1248–1258

    Article  Google Scholar 

  37. Wright SE, Rosen MA, Scott DS, Haddow JB (2002) The exergy flux of radiative heat transfer with an arbitrary spectrum. Exergy Int J 2(2):69–77

    Article  Google Scholar 

  38. Lu L, Tang J, Ran X (1999) Temperature and moisture changes during microwave drying of sliced food. Dry Technol 17(3):414–431

    Article  Google Scholar 

  39. Choi Y, Okos MR (1986) Effects of temperature and composition on the thermal properties of foods. In: Maguer L, Jelen P (eds) Food engineering and process applications: transport Phenomenon. Elsevier, New York, pp 3–101

    Google Scholar 

  40. Michailidis PA, Krokida MK, Rahman MS (2008) Data and models of density, shrinkage, and porosity. In: Rahman MS (ed) Food properties handbook. CRC Press, Boca Raton, pp 418–490

    Google Scholar 

  41. Zheng L, Delgado A, Sun D-W (2008) Surface heat transfer coefficients with and without phase change. In: Rahman MS (ed) Food properties handbook. CRC Press, Boca Raton, pp 718–754

    Google Scholar 

  42. Singh RP, Heldman DR (2013) Introduction to food engineering, 5th edn. Academic Press, London

    Google Scholar 

Download references

Acknowledgments

The author would like to extend their appreciations for financial support provided by the University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mortaza Aghbashlo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghbashlo, M. Exergetic simulation of a combined infrared-convective drying process. Heat Mass Transfer 52, 829–844 (2016). https://doi.org/10.1007/s00231-015-1594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1594-3

Keywords

Navigation