Skip to main content

Mathematical Modeling of Solar Drying Systems

  • Chapter
  • First Online:
Solar Drying Technology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Mathematical modeling appears to be valuable utensils for the forecasting of drying kinetics of agro-commodities. Numerous mathematical models like heat and mass balance models, thin-layer models, and equilibrium moisture content models have been used to illustrate the thin-layer and deep bed drying of agro-products. This chapter begins with a broad appraisal of the basic concepts and theories essential for the mathematical modeling of solar drying. Next, the common modeling approaches and developmental steps (model conceptualization, mathematical formulation, determination of model parameters, method of solution, and experimental validation) implicated in solar drying were outlined. Then a sequential progress of thin-layer drying models (semi-theoretical, theoretical, and empirical models) has been discussed briefly. The subsequent section reviews the application of above models by different researchers in the last decade. Afterward newly developed or commonly used thin-layer drying mathematical equations related to the solar collector models and drying cabinet models for different solar drying systems and food products were shown. Finally, we conclude this chapter with future directions and need for more investigations on solar drying. It is estimated that this chapter will be valuable to persons concerned with mathematical modeling and investigation of solar drying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal TM, Abe T (2000) Simulation of moisture changes in barley during far infrared radiation drying. Comput Electron Agric 26:137–145

    Article  Google Scholar 

  • Akpinar EK (2006) Determination of suitable thin layer drying curve model for some vegetables and fruits. J Food Eng 73:75–84

    Article  Google Scholar 

  • Akpinar EK (2008) Mathematical modelling and experimental investigation on sun and solar drying of white mulberry. J Mech Sci Technol 22:1544–1553

    Article  Google Scholar 

  • Akpinar EK (2010) Drying of mint leaves in a solar dryer and under open sun: modelling, performance analyses. Energy Convers Manag 51:2407–2418

    Article  Google Scholar 

  • Akpinar EK, Bicer Y (2005) Modeling of the drying of eggplants in thin-layers. Int J Food Sci Technol 40:273–281

    Article  Google Scholar 

  • Akpinar EK, Bicer Y (2008) Mathematical modeling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Convers Manag 49:1367–1375

    Article  Google Scholar 

  • Akpinar EK, Midilli A, Bicer Y (2003) Single layer drying behaviour of potato slices in a convective cyclone dryer and mathematical modeling. Energy Convers Manag 44:1689–1705

    Article  Google Scholar 

  • Bahnasawy AH, Shenana ME (2004) A mathematical model of direct sun and solar drying of some fermented dairy products (Kishk). J Food Eng 61(3):309–319

    Article  Google Scholar 

  • Bala BK, Chowdhury MMI, Haque MA (2011) Energy and exergy analysis of the solar drying of jackfruit leather. Biosyst Eng 110:222–229

    Article  Google Scholar 

  • Basunia MA, Abe T (2001) Thin-layer solar drying characteristics of rough rice under natural convection. J Food Eng 47(4):295–301

    Article  Google Scholar 

  • Black T (2014) A review on the Rooibos Tea Industry and thin-layer drying literature. Available on: http://efwe.ukzn.ac.za/Libraries/ResearchSeminars/Black;T.sflb.ashx. Accessed on 16 Feb 2015

  • Chukwunonye CD, Nnaemeka NR, Chijioke OV, Obiora NC (2016) Thin layer drying modelling for some selected Nigerian produce: a review. Am J Food Sci Nutr Res 3(1):1–15

    Article  Google Scholar 

  • Corzo O, Bracho N, Vasquez A, Pereira A (2010) Determination of suitable thin layer model for air drying of Coroba slices at different air temperatures and velocities. J Food Process Preserv 34:587–598

    Article  Google Scholar 

  • Diamante LM, Munro PA (1993) Mathematical modeling of the thin layer solar drying of sweet potato slices. Solar Energy 51:271–276

    Article  Google Scholar 

  • Ekechukwu OV (1999) Review of solar-energy drying systems I: an overview of drying principles and theory. Energy Convers Manag 40:593–613

    Article  Google Scholar 

  • El-Sabaii AA, Aboul-Enein S, Ramadan MRI, El-Gohary HG (2002) Empirical correlations for drying kinetics of some fruits and vegetables. Energy 27(9):845–859

    Article  Google Scholar 

  • Forson FK, Nazha MAA, Rajakaruna H (2007) Modeling and experimental studies on a mixed-mode natural convection solar crop -dryer. Sol Energy 81(3):346–357

    Article  Google Scholar 

  • Frejd P (2013) Modes of modeling assessment – a literature review. J Educ Stud Math 84(3):413–438

    Article  Google Scholar 

  • Fudholi A, Ruslan MH, Othman MY, Zaharim A, Sopian K (2013) Mathematical modeling of solar drying of thin layer Ginger. In: Azami Z, Kamaruzzaman S (eds) Conference of proceeding: latest trends in renewable energy and environmental informatics. Kuala Lumpur, Malaysia, April 2–4, 2013, pp 273–278. ISBN:978-1-61804-175-3

    Google Scholar 

  • Ismail MA, Ibn Idriss EM (2013) Mathematical modelling of thin layer solar drying of whole okra pods. Int Food Res J 20(4):1983–1989

    Google Scholar 

  • Janjai S (2012) A greenhouse type solar dryer for small-scale dried food industries: development and dissemination. Int J Energy Environ 3(3):383–398

    Google Scholar 

  • Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295

    Article  Google Scholar 

  • Karim MA, Hawlader MNA (2005) Mathematical modelling and experimental investigation of tropical fruits drying. Int J Heat Mass Transf 48:4914–4925

    Article  Google Scholar 

  • Kashaninejad MA, Mortazavi A, Safekordi A, Tabil LG (2005) Thin-layer drying characteristics and modeling of Pistachio nuts. J Food Eng

    Google Scholar 

  • Kucuk H, Midilli A, Kilic A, Dincer I (2014) A review on thin-layer drying-curve equations. Dry Technol 32:757–773

    Article  Google Scholar 

  • Kumar S, Tripathy PP (2009) A methodology for determination of temperature dependent mass transfer coefficients from drying kinetics: application to solar drying. J Food Eng 90:212–218

    Article  Google Scholar 

  • Lahsasni S, Kouhila M, Mahrouz M, Idlimam A, Jamali A (2004) Thin layer convective solar drying and mathematical modeling of prickly pear peel. Energy 29(2):211–224

    Article  Google Scholar 

  • Luikov AV (1975) Systems of differential equations of heat and mass transfer in capillary porous bodies (review). Int J Heat Mass Transf 18:1–14

    Article  MATH  Google Scholar 

  • Madamba PS, Driscoll RH, Buckle KA (1996) Thin layer drying characteristics of garlic slices. J Food Eng 29:75–97

    Article  Google Scholar 

  • Maria A (1997) Introduction to modeling and simulation. In: Andradottir S, Healy KJ, Withers DH, Nelson BL (eds) Proceedings of the 1997 winter simulation conference, pp 7–13

    Google Scholar 

  • Meisamiasl E, Rafiee S, Keyhani A, Tabatabaeefar A (2010) Determination of suitable thin layer drying curve model for apple slices. Plants Omics J 3(3):103–108

    Google Scholar 

  • Menzies DJ, O’callaghan JR, Ballay PH (1971) Digital simulation of agric. Dryer performance. Agric Eng Res 16(3):223–244

    Article  Google Scholar 

  • Midilli A, Kucuk H (2003a) Energy and exergy analysis of solar drying process of pistachio. Energy 28:539–556

    Article  Google Scholar 

  • Midilli A, Kucuk H (2003b) Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Convers Manag 44:1111–1122

    Article  Google Scholar 

  • Midilli A, Kucuk H, Yapar Z (2002) A new model for single-layer drying. Dry Technol 20(7):1503–1513

    Article  Google Scholar 

  • Onwude DI, Hashim N, Janius RB, Nawi NM, Abdan K (2016) Modeling the thin-layer drying of fruits and vegetables: a review. Compr Rev Food Sci Food Saf 15(3):599–618

    Article  Google Scholar 

  • Palipane K, Driscoll RH (1994) Thin layer drying behaviour of macadamia in shell nuts and kernels. J Food Eng 23:129–144

    Article  Google Scholar 

  • Panchariya PC, Popvic D, Sharma AL (2002) Thin layer modeling of black tea drying process. J Food Eng 52:349–357

    Article  Google Scholar 

  • Parry JL (1985) Mathematical modeling and computer simulation of heat and mass transfer in agricultural grain drying. J Agric Eng Res 32:1–29

    Article  Google Scholar 

  • Patil R, Gawande R (2016) A review on solar tunnel greenhouse drying system. Renew Sust Energ Rev 56:196–214

    Article  Google Scholar 

  • Pflug LJ, Blaisdell JL (1963) Methods of analysis of precooling data. ASHRAE J 5:33–40

    Google Scholar 

  • Sacilik K (2007) Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin. J Food Eng 79(1):23–30

    Article  Google Scholar 

  • Sacilik K, Keskin R, Elicin AK (2006) Mathematical modelling of solar tunnel drying of thin layer organic tomato. J Food Eng 73:231–238

    Article  Google Scholar 

  • Smitabhindu R, Janjai S, Chankong V (2008) Optimization of a solar-assisted drying system for drying bananas. Renew Energy 33:1523–1531

    Article  Google Scholar 

  • Togrul IT, Pehlivan D (2004) Modeling of thin layer drying kinetics of some fruits under open-air sun drying process. J Food Eng 65:413–425

    Article  Google Scholar 

  • Tunde-Akintunde TY (2011) Mathematical modeling of sun and solar drying of chilli pepper. Renew Energy 36:2139–2145

    Article  Google Scholar 

  • Usub T, Lertsatitthankorn C, Poomsa-ad N, Wiset L, Siriamornpun S, Soponronnarit S (2010) Thin layer solar drying characteristics of silkworm pupae. Food Bioprod Process 88:149–160

    Article  Google Scholar 

  • Van Meel DA (1958) Adiabatic convection batch drying with recirculating air. Chem Eng Sci 9:36–44

    Article  Google Scholar 

  • Yadollahinia AR, Omid M, Rafiee S (2008) Design and fabrication of experimental dryer for studying agricultural products. Int J Agric Biol 10(1):61–65

    Google Scholar 

  • Yagcioglu A, Degirmencioglu A, Cagatay F (1999) Drying characteristics of Laurel leaves under different conditions. In: International congress on agricultural mechanization and energy, Adana, Turkey, pp 565–569

    Google Scholar 

  • Yaldiz O, Ertekin C (2001) Thin layer solar drying of some vegetables. Dry Technol 19(3&4):583–597

    Article  Google Scholar 

  • Yaldiz O, Ertekin C, Uzun HI (2001) Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26:457–465

    Article  Google Scholar 

  • Zomorodian A, Moradi M (2010) Mathematical modeling of forced convection thin layer solar drying for cuminum cyminum. J Agric Sci Technol 12:401–408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra C. Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Patil, R.C., Gawande, R.R. (2017). Mathematical Modeling of Solar Drying Systems. In: Prakash, O., Kumar, A. (eds) Solar Drying Technology. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3833-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3833-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3832-7

  • Online ISBN: 978-981-10-3833-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics