Skip to main content
Log in

A semiclassical heat kernel proof of the Poincaré–Hopf theorem

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We consider the semiclassical asymptotic expansion of the heat kernel coming from Witten’s perturbation of the de Rham complex by a given function. For the index, one obtains a time-dependent integral formula which is evaluated by the method of stationary phase to derive the Poincaré–Hopf theorem. We show how this method is related to approaches using the Thom form of Mathai and Quillen. Afterwards, we use a more general version of the stationary phase approximation in the case that the perturbing function has critical submanifolds to derive a degenerate version of the Poincaré–Hopf theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Austin, D.M., Braam, P.J.: Morse–Bott theory and equivariant cohomology. In: Hofer, H., Taubes, C.H., Weinstein, A., Zehnder, E. (eds.) The Floer Memorial Volume, vol. 133, pp. 123–183. Birkhäuser, Basel (1995)

  2. Berline N., Getzler E., Vergne M.: Heat Kernels and Dirac Operators, 2nd edn. Springer, Berlin (1996)

    Google Scholar 

  3. Banyaga A., Hurtubise D.E.: A proof of the Morse–Bott lemma. Expos. Math. 22, 365–373 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bismut J.-M.: The Witten complex and the degenerate Morse inequalities. J. Differ. Geom. 23, 207–240 (1986)

    MathSciNet  MATH  Google Scholar 

  5. Bott R.: Nondegenerate critical manifolds. Ann. Math. 60(2), 248–261 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bär C., Pfäffle F.: Asymptotic heat kernel expansion in the semiclassical limit. Commun. Math. Phys. 294, 731–744 (2010)

    Article  MATH  Google Scholar 

  7. Chavel I.: Riemannian Geometry, 2nd edn. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  8. Chern S.: On curvature and characteristic classes of a Riemannian manifold. Abh. Math. Semin. Univ. Hambg. 20, 117–126 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dimassi M., Sjöstrand J.: Spectral Asymptotics in the Semi-classical Limit. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  10. Getzler E.: A short proof of the local Atiyah–Singer index theorem. Topology 25, 111–117 (1985)

    Article  MathSciNet  Google Scholar 

  11. Gilkey P.: Invariance Theory, the Heat Equation and the Atiyah–Singer Index Theorem. CRC Press Online, Boca Raton (1984)

    MATH  Google Scholar 

  12. Hughes, D.J.D.: Towards Hilbert’s 24th problem: combinatorial proof invariants Electron. Notes Theor. Comput. Sci. 165, 37–63 (2006)

  13. Ludewig M.: Vector fields with a non-degenerate source. J. Geom. Phys. 79, 59–76 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mathai V.: Heat kernels and Thom forms. J. Funct. Anal. 104, 34–46 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mathai V., Quillen D.: Superconnections, Thom classes and equivariant differential forms. Topology 25(1), 85–110 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Roe J.: Elliptic Operators, Topology and Asymptotic Methods, 2nd edn. Chapman and Hall, Boca Raton (1998)

    Google Scholar 

  17. Shubin M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin(1987)

    Book  MATH  Google Scholar 

  18. Sylvester J.J.: A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares. Philos. Mag. 4(23), 138–142 (1852)

    Google Scholar 

  19. Witten E.: Supersymmetry and Morse theory. J. Differ. Geom. 17, 661–692 (1982)

    MATH  Google Scholar 

  20. Zhang W.: Lectures on Chern–Weil Theory and Witten Deformations. World Scientific, Singapore (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Ludewig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludewig, M. A semiclassical heat kernel proof of the Poincaré–Hopf theorem. manuscripta math. 148, 29–58 (2015). https://doi.org/10.1007/s00229-015-0741-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-015-0741-y

Mathematics Subject Classification

Navigation