Skip to main content
Log in

Asymptotic Heat Kernel Expansion in the Semi-Classical Limit

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \({H_\hbar = \hbar^{2}L +V}\), where L is a self-adjoint Laplace type operator acting on sections of a vector bundle over a compact Riemannian manifold and V is a symmetric endomorphism field. We derive an asymptotic expansion for the heat kernel of \({H_\hbar}\) as \({\hbar \searrow 0}\). As a consequence we get an asymptotic expansion for the quantum partition function and we see that it is asymptotic to the classical partition function. Moreover, we show how to bound the quantum partition function for positive \({\hbar}\) by the classical partition function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berline N., Getzler E., Vergne M.: Heat Kernels and Dirac Operators. Springer, Berlin (1992)

    MATH  Google Scholar 

  2. Besse A.L.: Einstein Manifolds. Springer, Berlin (1987)

    MATH  Google Scholar 

  3. Chavel I.: Riemannian Geometry: A Modern Introduction. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  4. Elworthy, K.D., Ndumu, M.N., Trumam, A.: An elementary inequality for the heat kernel on a Riemannian manifold and the classical limit of the quantum partition function. Pitman Res. Notes Math. Ser., 150, Harlow: Longman Sci. Tech., 1986

  5. Golden S.: Lower bounds for the Helmholtz function. Phys. Rev. B 137, 1127–1128 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  6. Hess H., Schrader R., Uhlenbrock D.A.: Kato’s inequality and the spectral distribution of Laplacians on compact Riemannian manifolds. J. Diff. Geom. 15, 27–37 (1980)

    MATH  MathSciNet  Google Scholar 

  7. Lawson B.H., Michelsohn M.-L.: Spin Geometry. Princeton University Press, Princeton, NJ (1989)

    MATH  Google Scholar 

  8. Lenard, A.: Generalization of the Golden-Thompson inequality Tr(e A e B) ≥ Tr e A+B. Indiana Univ. Math. J. 21, 457–467 (1971/1972)

  9. Lichnerowicz A.: Spineurs harmoniques. C. R. Acad. Sci. Paris 257, 7–9 (1963)

    MATH  MathSciNet  Google Scholar 

  10. Schrader R., Taylor M.E.: Small \({\hbar}\) asymptotics for quantum partition functions associated to particles in external Yang-Mills potentials. Commun. Math. Phys. 92(4), 555–594 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  11. Schoen R., Yau S.-T.: Lectures on Differential Geometry. International Press, Cambridge USA (1994)

    MATH  Google Scholar 

  12. Simon, B.: Trace Ideals and their Applications. Second edition. Providence, RI: Amer. Math. Soc. 2005

  13. Simon, B.: Functional Integration and Quantum Physics. Second edition. AMS Chelsea Publishing, Providence, RI: Amer. Math. Soc., 2005

  14. Symanzik K.: Proof and refinements of an inequality of Feynman. J. Math. Phys. 6, 1155–1156 (1965)

    Article  ADS  Google Scholar 

  15. Thompson C.J.: Inequality with applications in statistical mechanics. J. Math. Phys. 6, 1812–1813 (1965)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bär.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bär, C., Pfäffle, F. Asymptotic Heat Kernel Expansion in the Semi-Classical Limit. Commun. Math. Phys. 294, 731–744 (2010). https://doi.org/10.1007/s00220-009-0973-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0973-3

Keywords

Navigation