Skip to main content
Log in

Estimation of linezolid exposure in patients with hepatic impairment using machine learning based on a population pharmacokinetic model

  • Research
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the pharmacokinetic changes of linezolid in patients with hepatic impairment and to explore a method to predict linezolid exposure.

Methods

Patients with hepatic impairment who received linezolid were recruited. A population pharmacokinetic model (PPK) was then built using NONMEM software. And based on the final model, virtual patients with rich concentration values was constructed through Monte Carlo simulations (MCS), which were used to build machine learning (ML) models to predict linezolid exposure levels. Finally, we investigated the risk factors for thrombocytopenia in patients included.

Results

A PPK model with population typical values of 3.83 L/h and 34.1 L for clearance and volume of distribution was established, and the severe hepatic impairment was identified as a significant covariate of clearance. Then, we built a series of ML models to predict the area under 0 -24 h concentration-time curve (AUC0-24) of linezolid based on virtual patients from MCS. The results showed that the Xgboost models showed the best predictive performance and were superior to the methods for estimating linezolid AUC0-24 based on though concentration or daily dose. Finally, we found that baseline platelet count, linezolid AUC0-24, and combination with fluoroquinolones were independent risk factors for thrombocytopenia, and based on this, we proposed a method for calculating the toxicity threshold of linezolid.

Conclusion

In this study, we successfully constructed a PPK model for patients with hepatic impairment and used ML algorithm to estimate linezolid AUC0-24 based on limited data. Finally, we provided a method to determine the toxicity threshold of linezolid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Livermore DM (2003) Linezolid in vitro: mechanism and antibacterial spectrum. J Antimicrob Chemother 51(Suppl 2):ii9-16. https://doi.org/10.1093/jac/dkg249

    Article  CAS  PubMed  Google Scholar 

  2. Clemett D, Markham A (2000) Linezolid. Drugs 59(4):815–827; discussion 828. https://doi.org/10.2165/00003495-200059040-00007

    Article  CAS  PubMed  Google Scholar 

  3. Moellering RC (2003) Linezolid: the first oxazolidinone antimicrobial. Ann Intern Med 138(2):135–142. https://doi.org/10.7326/0003-4819-138-2-200301210-00015

    Article  CAS  PubMed  Google Scholar 

  4. Yang L, Wu T, Li J, Li J (2018) Bacterial infections in acute-on-chronic liver failure. Semin Liver Dis 38(2):121–133. https://doi.org/10.1055/s-0038-1657751

    Article  PubMed  Google Scholar 

  5. Wynalda MA, Hauer MJ, Wienkers LC (2000) Oxidation of the novel oxazolidinone antibiotic linezolid in human liver microsomes. Drug Metab Dispos 28(9):1014–1017

    CAS  PubMed  Google Scholar 

  6. Luque S, Muñoz-Bermudez R, Echeverría-Esnal D, Sorli L, Campillo N, Martínez-Casanova J, González-Colominas E, Álvarez-Lerma F, Horcajada JP, Grau S, Roberts JA (2019) Linezolid dosing in patients with liver cirrhosis: standard dosing risk toxicity. Ther Drug Monit 41(6):732–739. https://doi.org/10.1097/ftd.0000000000000665

    Article  CAS  PubMed  Google Scholar 

  7. Liao R, Dong Y, Chen L, Wang T, Li H, Dong H (2023) A standard dose of linezolid puts patients with hepatic impairment at risk of overexposure. Eur J Clin Pharmacol 79(1):149–157. https://doi.org/10.1007/s00228-022-03427-7

    Article  CAS  PubMed  Google Scholar 

  8. Sasaki T, Takane H, Ogawa K, Isagawa S, Hirota T, Higuchi S, Horii T, Otsubo K, Ieiri I (2011) Population pharmacokinetic and pharmacodynamic analysis of linezolid and a hematologic side effect, thrombocytopenia. Japanese patients Antimicrob Agents Chemother 55(5):1867–1873. https://doi.org/10.1128/aac.01185-10

    Article  CAS  PubMed  Google Scholar 

  9. Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ (2003) Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet 42(15):1411–1423. https://doi.org/10.2165/00003088-200342150-00007

    Article  CAS  PubMed  Google Scholar 

  10. Pea F, Furlanut M, Cojutti P, Cristini F, Zamparini E, Franceschi L, Viale P (2010) Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother 54(11):4605–4610. https://doi.org/10.1128/aac.00177-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Töpper C, Steinbach CL, Dorn C, Kratzer A, Wicha SG, Schleibinger M, Liebchen U, Kees F, Salzberger B, Kees MG (2016) Variable linezolid exposure in intensive care unit patients-possible role of drug-drug interactions. Ther Drug Monit 38(5):573–578. https://doi.org/10.1097/ftd.0000000000000324

    Article  PubMed  Google Scholar 

  12. Peck-Radosavljevic M (2017) Thrombocytopenia in chronic liver disease. Liver Int 37(6):778–793. https://doi.org/10.1111/liv.13317

    Article  PubMed  Google Scholar 

  13. Kawasaki T, Takeshita A, Souda K, Kobayashi Y, Kikuyama M, Suzuki F, Kageyama F, Sasada Y, Shimizu E, Murohisa G, Koide S, Yoshimi T, Nakamura H, Ohno R (1999) Serum thrombopoietin levels in patients with chronic hepatitis and liver cirrhosis. Am J Gastroenterol 94(7):1918–1922. https://doi.org/10.1111/j.1572-0241.1999.01231.x

    Article  CAS  PubMed  Google Scholar 

  14. Zhang YM, Yu W, Zhou N, Li JZ, Xu LC, Xie ZY, Lu YF, Li LJ (2015) High frequency of thrombocytopenia in patients with acute-on-chronic liver failure treated with linezolid. Hepatobiliary Pancreat Dis Int 14(3):287–292. https://doi.org/10.1016/s1499-3872(15)60379-4

    Article  CAS  PubMed  Google Scholar 

  15. Ikuta S, Tanimura K, Yasui C, Aihara T, Yoshie H, Iida H, Beppu N, Kurimoto A, Yanagi H, Mitsunobu M, Yamanaka N (2011) Chronic liver disease increases the risk of linezolid-related thrombocytopenia in methicillin-resistant Staphylococcus aureus-infected patients after digestive surgery. J Infect Chemother 17(3):388–391. https://doi.org/10.1007/s10156-010-0188-8

    Article  CAS  PubMed  Google Scholar 

  16. Dou L, Meng D, Dong Y, Chen L, Han X, Fan D, Dong H (2020) Dosage regimen and toxicity risk assessment of linezolid in sepsis patients. Int J Infect Dis 96:105–111. https://doi.org/10.1016/j.ijid.2020.03.054

    Article  CAS  PubMed  Google Scholar 

  17. Li SC, Ye Q, Xu H, Zhang L, Wang Y (2019) Population pharmacokinetics and dosing optimization of linezolid in pediatric patients. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.02387-18

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang X, Wang Y, Yao F, Chen S, Hou Y, Zheng Z, Luo J, Qiu B, Li Z, Wang Y, Wu Z, Lan J, Chen C (2021) Pharmacokinetics of linezolid dose adjustment for creatinine clearance in critically ill patients: a multicenter, prospective, open-label, observational study. Drug Des Devel Ther 15:2129–2141. https://doi.org/10.2147/dddt.S303497

    Article  PubMed  PubMed Central  Google Scholar 

  19. Matsumoto K, Shigemi A, Takeshita A, Watanabe E, Yokoyama Y, Ikawa K, Morikawa N, Takeda Y (2014) Analysis of thrombocytopenic effects and population pharmacokinetics of linezolid: a dosage strategy according to the trough concentration target and renal function in adult patients. Int J Antimicrob Agents 44(3):242–247. https://doi.org/10.1016/j.ijantimicag.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  20. Srinivas NR, Syed M (2016) Applicability of a single time point strategy for the prediction of area under the concentration curve of linezolid in patients: superiority of Ctrough- over Cmax-derived linear regression models. Drugs R D 16(1):69–79. https://doi.org/10.1007/s40268-015-0117-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ota R, Yamashita F (2022) Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics. J Control Release 352:961–969. https://doi.org/10.1016/j.jconrel.2022.11.014

    Article  CAS  PubMed  Google Scholar 

  22. Poweleit EA, Vinks AA, Mizuno T (2023) Artificial intelligence and machine learning approaches to facilitate therapeutic drug management and model-informed precision dosing. Ther Drug Monit 45(2):143–150. https://doi.org/10.1097/ftd.0000000000001078

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gill J, Moullet M, Martinsson A, Miljković F, Williamson B, Arends RH, Pilla Reddy V (2022) Comparing the applications of machine learning, PBPK, and population pharmacokinetic models in pharmacokinetic drug-drug interaction prediction. CPT Pharmacometrics Syst Pharmacol 11(12):1560–1568. https://doi.org/10.1002/psp4.12870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Woillard JB, Labriffe M, Prémaud A, Marquet P (2021) Estimation of drug exposure by machine learning based on simulations from published pharmacokinetic models: the example of tacrolimus. Pharmacol Res 167:105578. https://doi.org/10.1016/j.phrs.2021.105578

    Article  CAS  PubMed  Google Scholar 

  25. Bououda M, Uster DW, Sidorov E, Labriffe M, Marquet P, Wicha SG, Woillard JB (2022) A machine learning approach to predict interdose vancomycin exposure. Pharm Res 39(4):721–731. https://doi.org/10.1007/s11095-022-03252-8

    Article  CAS  PubMed  Google Scholar 

  26. Kok B, Abraldes JG (2019) Child-Pugh classification: time to abandon? Semin Liver Dis 39(1):96–103. https://doi.org/10.1055/s-0038-1676805

    Article  PubMed  Google Scholar 

  27. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41. https://doi.org/10.1159/000180580

    Article  CAS  PubMed  Google Scholar 

  28. Dong H, Wang X, Dong Y, Lei J, Li H, You H, Wang M, Xing J, Sun J, Zhu H (2011) Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents 38(4):296–300. https://doi.org/10.1016/j.ijantimicag.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  29. Zhang SH, Zhu ZY, Chen Z, Li Y, Zou Y, Yan M, Xu Y, Wang F, Liu MZ, Zhang M, Zhang BK (2020) Population pharmacokinetics and dosage optimization of linezolid in patients with liver dysfunction. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.00133-20

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tikiso T, Fuhrmann V, König C, Jarczak D, Iwersen-Bergmann S, Kluge S, Wicha SG, Grensemann J (2023) Acute-on-chronic liver failure alters linezolid pharmacokinetics in critically ill patients with continuous hemodialysis: an observational study. Ann Intensive Care 13(1):83. https://doi.org/10.1186/s13613-023-01184-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin B, Hu Y, Xu P, Xu T, Chen C, He L, Zhou M, Chen Z, Zhang C, Yu X, Fang L, Zhu J, Ji Y, Lin Q, Cao H, Dai Y, Lu X, Shi C, Li L, Wang C, Li X, Fang Q, Miao J, Zhu Z, Lin G, Zhan H, Lv S, Zhu Y, Cai X, Ying Y, Chen M, Xu Q, Zhang Y, Xu Y, Federico P, Jiang S, Dai H (2022) Expert consensus statement on therapeutic drug monitoring and individualization of linezolid. Front Public Health 10:967311. https://doi.org/10.3389/fpubh.2022.967311

    Article  PubMed  PubMed Central  Google Scholar 

  32. Murray M (2016) CYP2J2 - regulation, function and polymorphism. Drug Metab Rev 48(3):351–368. https://doi.org/10.1080/03602532.2016.1188938

    Article  CAS  PubMed  Google Scholar 

  33. Bièche I, Narjoz C, Asselah T, Vacher S, Marcellin P, Lidereau R, Beaune P, de Waziers I (2007) Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics 17(9):731–742. https://doi.org/10.1097/FPC.0b013e32810f2e58

    Article  CAS  PubMed  Google Scholar 

  34. Davey PG (1988) Pharmacokinetics in liver disease. J Antimicrob Chemother 21(1):1–5. https://doi.org/10.1093/jac/21.1.1

    Article  CAS  PubMed  Google Scholar 

  35. Verbeeck RK (2008) Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol 64(12):1147–1161. https://doi.org/10.1007/s00228-008-0553-z

    Article  CAS  PubMed  Google Scholar 

  36. MacGowan AP (2003) Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J Antimicrob Chemother 51(Suppl 2):ii17-25. https://doi.org/10.1093/jac/dkg248

    Article  CAS  PubMed  Google Scholar 

  37. Danishuddin KV, Faheem M, Woo Lee K (2022) A decade of machine learning-based predictive models for human pharmacokinetics: advances and challenges. Drug Discov Today 27(2):529–537. https://doi.org/10.1016/j.drudis.2021.09.013

    Article  CAS  PubMed  Google Scholar 

  38. Dong HY, Xie J, Chen LH, Wang TT, Zhao YR, Dong YL (2014) Therapeutic drug monitoring and receiver operating characteristic curve prediction may reduce the development of linezolid-associated thrombocytopenia in critically ill patients. Eur J Clin Microbiol Infect Dis 33(6):1029–1035. https://doi.org/10.1007/s10096-013-2041-3

    Article  CAS  PubMed  Google Scholar 

  39. Cheah CY, De Keulenaer B, Leahy MF (2009) Fluoroquinolone-induced immune thrombocytopenia: a report and review. Intern Med J 39(9):619–623. https://doi.org/10.1111/j.1445-5994.2009.01996.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank authors and all the participants for their time and effort.

Funding

This work was supported by the National Natural Science Foundation of China (No. 82173898) and the Institutional foundation of the first affiliated hospital of Xi’an Jiaotong University (No. 2019ZYTS-01).

Author information

Authors and Affiliations

Authors

Contributions

RL: conception, design, data collection, analysis of data, interpretation of results, drafting, and revision of manuscript. HY: conception, design, and major revision of manuscript, and funding acquisition. YL: conception, design, major revision of manuscript. LH: data collection, and revision of manuscript. XL, HL and TT: interpretation of results, and revision of manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yalin Dong or Haiyan Dong.

Ethics declarations

Ethical approval

This study was approved by the Ethics Committee of the First Affiliated Hospital of Xi’an Jiaotong University (Xi’an, China). The institutional review board (IRB) approval number was “[XJTU1AF2019LSK-163].”

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 250 KB)

Supplementary file2 (PDF 242 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, R., Chen, L., Cheng, X. et al. Estimation of linezolid exposure in patients with hepatic impairment using machine learning based on a population pharmacokinetic model. Eur J Clin Pharmacol (2024). https://doi.org/10.1007/s00228-024-03698-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00228-024-03698-2

Keywords

Navigation