Skip to main content
Log in

Evaluation of felodipine as a potential perpetrator of pharmacokinetic drug-drug interactions

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

To evaluate felodipine as a potential perpetrator of pharmacokinetic drug-drug interactions (PK-DDIs) involving cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp).

Methods

Felodipine extended-release 10 mg was administered daily to six healthy subjects for 7 days (days 1–7). Subjects were administered a modified Inje cocktail comprising the selective probe substrates caffeine 100 mg (CYP1A2), losartan 25 mg (CYP2C9), omeprazole 20 mg (CYP2C19), dextromethorphan 30 mg (CYP2D6), midazolam 2 mg (CYP3A) and digoxin 250 μg (P-gp) on day 0 (prior to felodipine exposure) and day 7 (after felodipine exposure). Plasma samples were collected over 24 h and drug concentrations measured by UPLC-MS/MS.

Results

The geometric means of the area under the plasma concentration–time curve ratios (probe AUC after felodipine exposure/probe AUC prior to felodipine exposure) and 95 % confidence intervals for each probe were: caffeine 0.91 (0.64–1.30), losartan 1.05 (0.95–1.15), omeprazole 1.17 (0.78–1.76), dextromethorphan 1.46 (1.00–2.12), midazolam 1.23 (0.99–1.52) and digoxin 1.01 (0.89–1.15).

Conclusion

Felodipine may be a weak in vivo inhibitor of CYP3A and CYP2D6 but is unlikely to act as a significant perpetrator of PK-DDIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. National Heart Foundation (2010) Guide to managment of hypertension 2008. Assessing and managing raised blood pressure in adults. Updated 2010. National Heart Foundation, Sydney

    Google Scholar 

  2. Bailey DG et al (1991) Interaction of citrus juices with felodipine and nifedipine. Lancet 337(8736):268–269

    Article  CAS  PubMed  Google Scholar 

  3. Jalava KM, Olkkola KT, Neuvonen PJ (1997) Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 61(4):410–415

    Article  CAS  PubMed  Google Scholar 

  4. Capewell S et al (1988) Reduced felodipine bioavailability in patients taking anticonvulsants. Lancet 2(8609):480–482

    Article  CAS  PubMed  Google Scholar 

  5. Ma B, Prueksaritanont T, Lin JH (2000) Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos 28(2):125–130

    CAS  PubMed  Google Scholar 

  6. Polasek TM et al (2004) Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J Pharmacol Exp Ther 311(3):996–1007

    Article  CAS  PubMed  Google Scholar 

  7. Walsky RL, Gaman EA, Obach RS (2005) Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol 45:68–78

    Article  CAS  PubMed  Google Scholar 

  8. Smith SR et al (1987) Pharmacokinetic interactions between felodipine and metoprolol. Eur J Clin Pharmacol 31(5):575–578

    Article  CAS  PubMed  Google Scholar 

  9. Meyer BH et al (1992) The effects of felodipine on the pharmacokinetics of diazepam. Int J Clin Pharmacol Ther Toxicol 30(4):117–121

    CAS  PubMed  Google Scholar 

  10. Rehnqvist N et al (1987) Pharmacokinetics of felodipine and effect on digoxin plasma levels in patients with heart failure. Drugs 34(Suppl 3):33–42

    Article  PubMed  Google Scholar 

  11. Butani L, Berg G, Makker SP (2002) Effect of felodipine on tacrolimus pharmacokinetics in a renal transplant recipient. Transplantation 73(1):159–160

    Article  PubMed  Google Scholar 

  12. Polasek TM, Miners JO (2007) In vitro approaches to investigate mechanism-based inactivation of CYP enzymes. Expert Opin Drug Metab Toxicol 3(3):321–329

    Article  CAS  PubMed  Google Scholar 

  13. US Food and Drug Administration, Guidance for industry. Drug interaction studies—study design, data analysis, and implications for dosing, and labeling recommendation. 2012: Rockville, MD

  14. European Medicines Agency, Guideline on the investigation of drug interactions. 2012: London, UK

  15. Lahiri DK et al (1992) A non-organic and non-enzymatic extraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods tested. J Biochem Biophys Methods 25(4):192–203

    Article  Google Scholar 

  16. Wright GEB et al (2010) Elucidation of CYP2D6 genetic diversity in a unique African population: implications for the future application of pharmacogenetics in the Xhosa population. Ann Hum Genet 74(4):340–350

    Article  CAS  PubMed  Google Scholar 

  17. Hsiao CL, Wu YC, Hsu KY (2011) Pharmacokinetics of felodipine extended-release tablets in healthy Taiwanese subjects: a retrospective review. Arzneimittelforschung 61(8):444–451

    Article  CAS  PubMed  Google Scholar 

  18. Olkkola KT, Backman JT, Neuvonen PJ (1994) Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 55(5):481–485

    Article  CAS  PubMed  Google Scholar 

  19. Kang BC et al (2002) Influence of fluconazole on the pharmacokientics of omeprazole in healthy volunteers. Biopharm Drug Dispos 23:77–81

    Article  CAS  PubMed  Google Scholar 

  20. Harder S et al (1988) 4-quinolones inhibit biotransformation of caffeine. Eur J Clin Pharmacol 35(6):651–656

    Article  CAS  PubMed  Google Scholar 

  21. Williamson KM et al (1998) Effects of erythromycin or rifampin on losartan pharmacokinetics in healthy volunteers. Clin Pharmacol Ther 63(3):316–323

    Article  CAS  PubMed  Google Scholar 

  22. Greiner B et al (1999) The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Investig 104(2):147–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ryu JY et al (2007) Development of the “Inje cocktail” for high-throughput evaluation of five human cytochrome P450 isoforms in vivo. Clin Pharmacol Ther 82(5):531–540

    Article  CAS  PubMed  Google Scholar 

  24. Kirby B et al (2006) Simultaneous measurement of in vivo p-glycoprotein and cytochrome P450 3A activities. J Clin Pharmacol 46(11):1313–1319

    Article  CAS  PubMed  Google Scholar 

  25. Fuhr U, Jetter A, Kirchheiner J (2007) Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the “cocktail” approach. Clin Pharmacol Ther 81(2):270–283

    Article  CAS  PubMed  Google Scholar 

  26. Andersson T (1996) Pharmacokinetics, metabolism and interactions of acid pump inhibitors. Focus on omeprazole, lansoprazole and pantoprazole. Clin Pharmacokinet 31(1):9–28

    Article  CAS  PubMed  Google Scholar 

  27. Sica DA, Gehr TW, Ghosh S (2005) Clinical pharmacokinetics of losartan. Clin Pharmacokinet 44(8):797–814

    Article  CAS  PubMed  Google Scholar 

  28. De Smet M et al (1995) Effect of multiple doses of losartan on the pharmacokinetics of single doses of digoxin in healthy volunteers. Br J Clin Pharmacol 40(6):571–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Oosterhuis B et al (1991) Minor effect of multiple dose omeprazole on the pharmacokinetics of digoxin after a single oral dose. Br J Clin Pharmacol 32(5):569–572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Polasek T et al (2011) Perpetrators of pharmacokinetic drug-drug interactions from altered cytochrome P450 activity: a criteria-based assessment. Br J Clin Pharmacol 71(5):727–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bengtsson-Hasselgren B et al (1990) Acute effects of felodipine and nifedipine on hepatic and forearm blood flow in healthy men. Eur J Clin Pharmacol 38(6):529–533

    Article  CAS  PubMed  Google Scholar 

  32. Rowland M, Tozer TN (1995) Clinical pharmacokinetics: concepts and applications. 3rd ed. Williams & Wilkins, Baltimore

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Martin Kennedy and Ms. Allison Miller at the Carney Centre for Pharmacogenomics (University of Otago, Christchurch, New Zealand) for CYP2D6 genotyping. We also thank Dr. Helen Healy for clinical support during the study visits and Dr. Ganessan Kichenadasse for useful feedback on the study design.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Polasek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 26 kb)

Supplementary Table 2

(DOCX 26 kb)

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyder, B.D., Rowland, A., Polasek, T.M. et al. Evaluation of felodipine as a potential perpetrator of pharmacokinetic drug-drug interactions. Eur J Clin Pharmacol 70, 1115–1122 (2014). https://doi.org/10.1007/s00228-014-1716-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-014-1716-8

Keywords

Navigation