Skip to main content
Log in

The vicariant role of Caribbean formation in driving speciation in American loliginid squids: the case of Doryteuthis pealeii (Lesueur 1821)

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Speciation processes in the marine environment are often directly associated with vicariant events. In the case of loliginid squids (Cephalopoda: Loliginidae), these processes have been increasingly elucidated in recent years with the development of molecular technologies and increased sampling in poorly studied geographical regions, revealing a high incidence of cryptic speciation. Doryteuthis pealeii is a commercially important squid species for North Atlantic fisheries and has the second broadest geographic distribution in this genus. This study aimed to investigate the evolutionary history of this species and which biogeographic events may have influenced its diversification by assessing mitochondrial and nuclear markers. Our findings indicate that two previously detected lineages diverged from one another ~ 8 million years, compatible with the formation of the Caribbean and the establishment of the Amazon plume. Furthermore, separation between a North Atlantic and a Gulf of Mexico lineage during the Pleistocene period was noted. The inadequate classification of this cryptic diversity may have negative implications for the development of effective conservation and fisheries measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data and code availability

Biological, distributional data, and sequences were taken from open sources (i.e., GenBank, FAO books).

References

  • Ali JR, Hedges SB (2021) Colonizing the Caribbean: new geological data and an updated land-vertebrate colonization record challenge the GAARlandia land-bridge hypothesis. J Biogeogr 48(11):2699–2707

    Article  Google Scholar 

  • Anderson JD (2007) Systematics of the North American menhadens: molecular evolutionary reconstructions in the genus Brevoortia (Clupeiformes: Clupeidae). US Natl Mar Fish Serv Fish Bull 205:368–378

    Google Scholar 

  • Anderson FE, Lindgren AR (2021) Phylogenomic analyses recover a clade of large-bodied decapodiform cephalopods. Mol Phylogenet Evol 156:107038

    Article  PubMed  Google Scholar 

  • Anderson FE, Marian JEA (2020) The grass squid Pickfordiateuthis pulchella is a paedomorphic loliginid. Mol Phylogenet Evol 147:106801

    Article  PubMed  Google Scholar 

  • Anderson FE, Pilsits A, Clutts S, Laptikhovsky V, Bello G, Balguerías E et al (2008) Systematics of Alloteuthis (Cephalopoda: Loliginidae) based on molecular and morphometric data. J Exp Mar Biol Ecol 364:99–109

    Article  CAS  Google Scholar 

  • Anderson FE, Engelke R, Jarrett K, Valinassab T, Mohamed KS, Aokan PK et al (2011) Phylogeny of the Sepia pharaonis species complex (Cephalopoda: Sepiida) based on analyses of mitochondrial and nuclear DNA sequence data. J Molluscan Stud 77:65–75

    Article  Google Scholar 

  • Anderson JD, Karel WJ, Mione AC (2012) Population structure and evolutionary history of Southern Flounder in the Gulf of Mexico and western Atlantic Ocean. Trans Am Fish Soc 141(1):46–55

    Article  Google Scholar 

  • Avendaño O, Roura Á, Cedillo-Robles CE, González ÁF, Rodríguez-Canul R, Velázquez-Abunader I, Guerra Á (2020) Octopus americanus: a cryptic species of the O. vulgaris species complex redescribed from the Caribbean. Aquat Ecol 54(4):909–925

  • Avise JC (1992) Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63:62–76

    Article  CAS  Google Scholar 

  • Avise JC (2006) Evolutionary pathways in nature: a phylogenetic approach. Cambridge University Press

    Book  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14(5):1377–1390

    Article  CAS  PubMed  Google Scholar 

  • Bellwood DR, van Herwerden L, Konow N (2004) Evolution and biogeography of marine angelfishes (Pisces: Pomacanthidae). Mol Phylogenet Evol 33(1):140–155

    Article  CAS  PubMed  Google Scholar 

  • Blainville HD (1823) Memoire sur les especes du genre Calmar (Loligo, Lamarck). J Phys Chim Hist Nat Arts 96:116–135

    Google Scholar 

  • Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A et al (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15:1–28. https://doi.org/10.1371/journal.pcbi.1006650

    Article  CAS  Google Scholar 

  • Bowen BW, Rocha LA, Toonen RJ, Karl SA (2013) The origins of tropical marine biodiversity. Trends Ecol Evol 28(6):359–366

    Article  PubMed  Google Scholar 

  • Bowen BW, Forsman ZH, Whitney JL, Faucci A, Hoban M, Canfield SJ et al (2020) Species radiations in the sea: what the flock? J Heredity 111(1):70–83

    Article  Google Scholar 

  • Boyle PR, Rodhouse PG (2005) Cephalopods: ecology and fisheries. Blackwell Science Ltd., Oxford, p 438

    Book  Google Scholar 

  • Brakoniecki TF (1984) A full description of Loligo sanpaulensis, Brakoniecki, 1984 and a redescription of Loligo gahi D’Orbigny, 1835, two species of squid (Cephalopoda; Myopsida) from the Southwest Atlantic. Bull Mar Sci 34(3):435–448

    Google Scholar 

  • Buresch KC, Gerlach G, Hanlon RT (2006) Multiple genetic stocks of longfin squid Loligo pealeii in the NW Atlantic: stocks segregate inshore in summer, but aggregate offshore in winter. Mar Ecol Progr Ser 310:263–270

    Article  CAS  Google Scholar 

  • Cárcamo-Tejer V, Vila I, Llanquín-Rosas F, Sáez-Arteaga A, Guerrero-Jiménez C (2021) Phylogeography of high Andean killifishes Orestias (Teleostei: Cyprinodontidae) in Caquena and Lauca sub-basins of the Altiplano (Chile): mitochondrial and nuclear analysis of an endangered fish. PeerJ 9:e11917. https://doi.org/10.7717/peerj.11917

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng SH, Anderson FE, Bergman A, Mahardika GN, Muchilsin ZA, Dang BT et al (2014) Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans. Hydrobiologia 725:165–188

    Article  CAS  Google Scholar 

  • Clarke MR, Maddock L (1988) Statoliths of fossil coleoid cephalopods. In: Clarke MR, Trueman ER (eds) The mollusca. paleontology and neontology of cephalopods, vol 12. Academic Press, San Diego

  • Clarke MR, Fitch JE (1979) Statoliths of Cenozoic teuthoid cephalopods from North America. Palaeontology 22(2):479–511

    Google Scholar 

  • Cohen AC (1976) The systematics and distribution of Loligo (Cephalopoda, Myopsida) in the western North Atlantic, with descriptions of two new species. Malacologia 15:229–367

    Google Scholar 

  • Costa TA, Sales JB, Markaida U, Granados-Amores J, Gales SM, Sampaio I et al (2021) Revisiting the phylogeny of the genus Lolliguncula Steenstrup 1881 improves understanding of their biogeography and proves the validity of Lolliguncula argus Brakoniecki & Roper, 1985. Mol Phylogenet Evol 154:106968

    Article  PubMed  Google Scholar 

  • Cowman PF, Bellwood DR (2013) The historical biogeography of coral reef fishes: global patterns of origination and dispersal. J Biogeogr 40(2):209–224

    Article  Google Scholar 

  • Cowman PF, Parravicini V, Kulbicki M, Floeter SR (2017) The biogeography of tropical reef fishes: endemism and provinciality through time. Biol Rev 92(4):2112–2130

    Article  PubMed  Google Scholar 

  • Cox CB, Moore PD (2005) Biogeography: an ecological and evolutionary approach, 7th edn. Blackweel, Oxford

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Schepper S, Schreck M, Beck KM, Matthiessen J, Fahl K, Mangerud G (2015) Early Pliocene onset of modern Nordic Seas circulation related to ocean gateway changes. Nat Commun 6:8659

    Article  PubMed  Google Scholar 

  • Delić T, Stoch F, Borko Š, Flot JF, Fišer C (2020) How did subterranean amphipods cross the Adriatic Sea? Phylogenetic evidence for dispersal–vicariance interplay mediated by marine regression–transgression cycles. J Biogeogr 47(9):1875–1887

    Article  Google Scholar 

  • Díaz-Santana-Iturrios MD, Salinas-Zavala CA, Granados-Amores J, de la Cruz-Agüero J, García-Rodríguez FJ (2019) Taxonomic considerations of squids of the family Loliginidae (Cephalopoda: Myopsida) supported by morphological, morphometric, and molecular data. Mar Biodiver 49(5):2401–2409

    Article  Google Scholar 

  • Diester-Haass L (1992) Late Eocene-Oligocene sedimentation in the Antarctic Ocean, Atlantic sector (Maud Rise, ODP Leg 113, Site 689): development of surface and bottom water circulation. The Antarctic Paleoenvironment: a Perspective on Global Change. Part One 56:185–202

    Google Scholar 

  • Douglas J, Jimenez-Silva CL, Bouckaert R (2022) Starbeast3: adaptive parallelised bayesian inference under the multispecies coalescent. System Biol 71:901–916. https://doi.org/10.1093/sysbio/syac010

    Article  CAS  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5):e88. https://doi.org/10.1371/journal.pbio.0040088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Smouse PE, Quattro M (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Schneider F (2005) Arlequin, v. 3.11. An integrated software package for population genetic data analysis. Evol Bioinform 1:47–50

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fernández-Álvarez FÁ, Sánchez P, Villanueva R (2021) Morphological and molecular assessments of bobtail squids (Cephalopoda: Sepiolidae) reveal a hidden history of biodiversity. Front Mar Sci 7:632261

    Article  Google Scholar 

  • Figueiredo JJJP, Hoorn C, Van der Ven P, Soares E (2009) Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology 37(7):619–622

    Article  Google Scholar 

  • Fischer JC, Riou B (2002) Vampyronassa rhodanica nov. gen. nov sp., vampyromorphe (Cephalopoda, Coleoidea) du Callovien inférieur de La Voulte-sur-Rhône (Ardèche, France). Annales de Paléontologie 88(1):1–17

  • Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P et al (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47

    Article  Google Scholar 

  • Forsythe JW, Van Heukelem WF (1987) Growth. In: Boyle PR (eds) Cephalopod life cycles, vol. II. Comparative review. Academic Press, London, pp 135–156

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth hitchhiking and background selection. Genetics 147:915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. System Biol 62(5):707–724

    Article  Google Scholar 

  • Galarza JA, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, Turner GF, Rico C (2009) The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc Natl Acad Sci 106(5):1473–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrocq C, Lallemand S, Marcaillou B, Lebrun J-F, Padron C, Klingelhoefer F et al (2021) Genetic relations between the Aves Ridge and the Grenada back-arc Basin, East Caribbean Sea. J Geophys Res Solid Earth 126:e2020JB020466. https://doi.org/10.1029/2020J B020466

  • Gerlach G, Buresch KC, Hanlon RT (2012) Population structure of the squid Doryteuthis pealeii on the eastern coast of the USA: Comment on Shaw et al., 2010. Mar Ecol Progr Ser 450:281–283

    Article  Google Scholar 

  • Gold JR, Richardson LR (1998) Mitochondrial DNA diversification and population structure in fishes from the Gulf of Mexico and western Atlantic. J Heredity 89:404–414

    Article  Google Scholar 

  • Guidon S, Dufayard JF, Lefort V, Anisimova M, Hordjik W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. System Biol 59(3):307. https://doi.org/10.1093/sysbio/syq010

  • Guillot G, Estoup A, Mortier F, Cosson JF (2005a) A spatial statistical model for landscape genetics. Genetics 170:1261–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005b) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sympos Ser 41:95–98

    CAS  Google Scholar 

  • Haq BH, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus C et al (eds) Sea-level changes: an integrated approach. society of economic paleontologists and mineralogists special publication 42, pp 71–108

  • Hare MP, Guenther C, Fagan WF (2005) Nonrandom larval dispersal can steepen marine clines. Evolution 59(12):2509–2517

    PubMed  Google Scholar 

  • Hatfield EMC, Cadrin SX (2002) Geographic and temporal patterns in size and maturity of the longfin inshore squid (Loligo pealeii) off the northeastern United States. Fish Bull 100(2):200–213

    Google Scholar 

  • Heled J, Drummonf AJ, Xie W (2011) Bayesian inference of Species Trees from multilocus data using ∗BEAST. Mol Biol Evol 27(3):570–580

    Article  Google Scholar 

  • Herke SW, Foltz DW (2002) Phylogeograohy of two squid (Loligo pealei and L. plei) in the Gulf of Mexico and northwestern Atlantic Ocean. Mar Biol 140:103–115

    Article  CAS  Google Scholar 

  • Hoorn C, Bogotá-A GR, Romero-Baez M, Lammertsma EI, Flantua SGA, Dantas EL et al (2017) The Amazon at sea: onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Glob Planet Change 153:51–65

    Article  Google Scholar 

  • Ibáñez CM, Luna A, Márquez-Gajardo C, Torres FI, Sales JBL (2023) Biological traits as determinants in the macroecological patterns of distribution in loliginid squids. Mar Biol 170(11):133. https://doi.org/10.1007/s00227-023-04286-1

    Article  Google Scholar 

  • Iturralde-Vinent MA, MacPhee RDE (1999) Paleogeography of the Caribbean region: implications for Cenozoic biogeography. Bull Am Museum Nat Hist 238:1–95

    Google Scholar 

  • James KH (2005) A simple synthesis of Caribbean geology. Caribb J Earth Sci 39:69–82

    Google Scholar 

  • Jereb P, Roper CFE (2010) Family Loliginidae. In: Jereb P, Roper CFE (eds) Cephalopods of the world. An annotated and illustrated catalogue of species known to date (No. 4, Vol. 2. Myopsid and Oegopsid squids, 38–117 pp). Rome: Ed. by, C. F. E. FAO Species Catalogue for Fisheries Purposes, FAO

  • Jesus MD, Sales JBL, Martins RS, Ready JS, Costa TAS, Ablett JD, Schiavetti A (2021) Traditional knowledge aids description when resolving the taxonomic status of unsettled species using classical and molecular taxonomy: the case of the shallow-water octopus Callistoctopus furvus (Gould, 1852) from the western Atlantic Ocean. Front Mar Sci 7:595244

    Article  Google Scholar 

  • Juanicó M (1983) Squid maturity scales for population analysis. In: Caddy JF (eds) Advances in assessment of world cephalopod resource. FAO Fish. Tech. Pap 231:341–378

  • Judkins HL, Vecchione M, Roper CFE (2009) Cephalopoda (Mollusca) of the Gulf of Mexico. In: Felder DL, Camp DK (eds) Gulf of mexico–origins, waters, and biota. Biodiversity. A and M Press, College Station, pp 701–709

  • Karig DE (1972) Remnant arcs. Geol Soc Am Bull 83:1057–1068

    Article  Google Scholar 

  • Lesueur CA (1821) Descriptions of several new species of cuttlefish. J Acad Nat Sci Phila 2:86–101

    Google Scholar 

  • Mackensen A, Ehrmann WU (1992) Middle Eocene through early Oligocene climate history and paleoceanography in the Southern Ocean: Stable oxygen and carbon isotopes from ODP sites on Maud Rise and Kerguelen Plateau. Mar Geol 108(1):1–27

    Article  CAS  Google Scholar 

  • MacPhee RDE, Iturralde-Vinent MA (1994) First Tertiary land mammal from Greater Antilles: an early Miocene sloth (Xenarthra, Megalonychidae) from Cuba. Am Museum Novitates 3094:1–13

    Google Scholar 

  • Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. System Biol 55:21–30

    Article  Google Scholar 

  • Mayr E (1954) Geographic speciation in tropical echinoids. Evolution 8:1–18

    Article  Google Scholar 

  • Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz M et al (2005) The Phanerozoic record of global sea-level change. Science 310:1293–1298

    Article  CAS  PubMed  Google Scholar 

  • Neige P, Lapierre H, Merle D (2016) New Eocene Coleoid (Cephalopoda) diversity from Statolith remains: taxonomic assignation, fossil record analysis, and new data for calibrating molecular phylogenies. PLoS ONE 11(5):e0154062

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Dea A, Rodríguez F, De Gracia C, Coates A (2007) Patrimonio paleontológico. La paleontología marina en el Istmo de Panamá. Canto Rodado 2:149–179

    Google Scholar 

  • Pardo-Gandarillas MC, Ibáñez CM, Torres FI, Sanhueza V, Fabres A, Escobar-Dodero J, Mardones FO, Méndez MA (2018) Phylogeography and species distribution modelling reveal the effects of the Pleistocene ice ages on an intertidal limpet from the South-Eastern Pacific. J Biogeogr 45(8):1751–1767. https://doi.org/10.1111/jbi.13362

    Article  Google Scholar 

  • Pardo-Gandarillas MC, Díaz-Santana-Iturrios M, Fenwick M, Villanueva R, Ibáñez CM (2021) Redescription of the flapjack octopod, Opisthoteuthis bruuni (Cephalopoda: Opisthoteuthidae) from the southeastern Pacific Ocean and evolutionary relationships of cirrate octopods. Malacologia 63(2):155–169. https://doi.org/10.4002/040.063.0201

    Article  Google Scholar 

  • Philippon M, Cornée J-J, Münch P, van Hinsbergen DJJ, BouDagher-Fadel M, Gailler L et al (2020) Eocene intra-plate shortening responsible for the rise of a faunal pathway in the northeastern Caribbean realm. PLoS ONE 15:e0241000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillans B, Chappell J, Naish TR (1998) A review of the Milankovich climatic beat: template for Plio-Pleistocene sea-level changes and sequence stratigraphy. Sed Geol 122:5–21

    Article  CAS  Google Scholar 

  • Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S et al (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. System Biol 55(4):595–609

    Article  Google Scholar 

  • Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol 21(8):1864–1877

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rambaut A, Drummond AJ (2009) Tracer v.1.5. http://beast.bio.ed.ac.uk/Tr

  • Ravelo AC, Andreasen DH, Lyle M, Lyle AO, Wara MW (2004) Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429:263–267

    Article  CAS  PubMed  Google Scholar 

  • Rea DK, Lohmann KC, MacLeod ND, House MA, Hovan SA, Martin GD (1991) Oxygen and carbon isotopic records the oozes of ODP sites 752, 754, 756/757, eastern Indian Ocean. Proc Ocean Drill Program Sci Results 121:229–240

    Google Scholar 

  • Rocha LA, Robertson DR, Roman J, Bowen BW (2005). Ecological speciation in tropical reef fishes. Proc R Soc B Biol Sci 272(1563):573–579

  • Rodrigues-Filho LFS, Costa NP, Sodré D, da Silva Leal JR, Nunes JLS, Rincon G, Lessa RPT, Sampaio I, Vallinoto M, Ready JS, Sales JBL (2023) Evolutionary history and taxonomic reclassification of the critically endangered daggernose shark, a species endemic to the Western Atlantic. J Zool System Evol Res. https://doi.org/10.1155/2023/4798805

  • Sales JBL, Shaw PW, Haimovici M, Markaida U, Cunha DB, Ready J et al (2013) New molecular phylogeny of the squids of the family Loliginidae with emphasis on the genus Doryteuthis Naef, 1912: Mitochondrial and nuclear sequences indicate the presence of cryptic species in the southern Atlantic Ocean. Mol Phylogenet Evol 68:293–299

    Article  PubMed  Google Scholar 

  • Sales JBL, Markaida U, Shaw PW, Haimovici M, Ready JS, Figueiredo-Ready WMB et al (2014) Molecular phylogeny of the genus Lolliguncula Steenstrup, 1881 based on nuclear and mitochondrial DNA sequences indicates genetic isolation of populations from North and South Atlantic, and the possible presence of further cryptic species. PLoS ONE 9:e88693

    Article  PubMed  PubMed Central  Google Scholar 

  • Sales JBL, Rodrigues-Filho LFS, Ferreira YS, Carneiro J, Asp NE, Shaw PW et al (2017) Divergence of cryptic species of Doryteuthis plei Blainville, 1823 (Loliginidae, Cephalopoda) in the Western Atlantic Ocean is associated with the formation of the Caribbean Sea. Mol Phylogenet Evol 106:44–54

    Article  PubMed  Google Scholar 

  • Sales JBL, Haimovici M, Ready JS, Souza RF, Ferreira Y, Pinon JCS et al (2019) Surveying cephalopod diversity of the Amazon reef system using samples from red snapper stomachs and description of a new genus and species of octopus. Sci Rep 9(1):1–16

    Google Scholar 

  • Salzburger W, Ewing GB, von Haesler A (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 20:1952–1963

    Article  PubMed  Google Scholar 

  • Sánchez G, Perry HM, Trigg CB (1996) Morphometry of juvenile and subadult Loligo pealei and L. plei from the northern Gulf of Mexico. Fish Bull (wash DC) 94:535–550

    Google Scholar 

  • Sanchez G, Fernández-Álvarez FÁ, Taite M, Sugimoto C, Jolly J, Simakov O, Marlétaz F, Allcock L, Rokhsar DS (2021) Phylogenomics illuminates the evolution of bobtail and bottletail squid (order Sepiolida). Commun Biol 4(1):819. https://doi.org/10.1038/s42003-021-02348-y

    Article  Google Scholar 

  • Sarnthein M, Winn K, Zahn R (1987) Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic change during deglaciation times. In: Berger WH, Labeyrie LD (eds) Abrupt climatic change. Springer, Dordrecht, pp 311–337

    Chapter  Google Scholar 

  • Shackleton NJ, Hall MA, Boersma A (1984) Oxygen and carbon isotope data from Leg-74 foraminifers. In: Moore, TC Jr, Rabinowitz PD et al (eds) Initial reports of the deep sea drilling project, 74, pp 599–612

  • Shaw PW, Hendrickson L, McKeown NJ, Stonier T, Naud MJ, Sauer WH (2012) Population structure of the squid Doryteuthis (Loligo) pealeii on the eastern coast of the USA: Reply to Gerlach et al., 2012. Mar Ecol Progr Ser 450:285–287

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236(4803):787–792

    Article  CAS  PubMed  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson MAX et al (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57(7):573–583

    Article  Google Scholar 

  • Strugnell J, Jackson J, Drummond AJ, Cooper A (2006) Divergence time estimates for major cephalopod groups: evidence from multiple genes. Cladistics 22(1):89–96

    Article  PubMed  Google Scholar 

  • Suto I, Kawamura K, Hagimoto S, Teraishi A, Tanaka Y (2012) Changes in upwelling mechanisms drove the evolution of marine organisms. Palaeogeogr Palaeoclimatol Palaeoecolol 339:39–51

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA Polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tourinho JL, Solé-Cava AM, Lazoski C (2012) Cryptic species within the commercially most important lobster in the tropical Atlantic, the spiny lobster Panulirus argus. Mar Biol 159:1897–1906. https://doi.org/10.1007/s00227-012-1977-7

    Article  Google Scholar 

  • Ulloa PM, Hernández CE, Rivera RJ, Ibáñez CM (2017) Biogeografía histórica de los calamares de la familia Loliginidae (Teuthoidea: Myopsida). Lat Am J Aquat Res 45(1):113–129. https://doi.org/10.3856/vol45-issue1-fulltext-11

    Article  Google Scholar 

  • Vecchione M, Shea E, Bussarawit S, Anderson F, Alexeyev D, Lu CC et al (2005) Systematics of Indo-West Loliginids. Phuket Mar Biol Center Res Bull 66:23–26

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Yu Y, Blair C, He XJ (2020) RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol Biol Evol 37(2):604–606

    Article  CAS  PubMed  Google Scholar 

  • Zachos JC, Quinn TM, Salamy KA (1996) High-resolution (10(4) years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography 11:251–266

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29(22):2869–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwickl DJ, Hillis DM (2002) Increased taxa sampling greatly reduces phylogenetic error. System Biol 51:588–598

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rosalia Souza, and the fishermen’s off Bragança for supplying specimens.

Funding

This work has been supported by the National Council for Scientific and Technological Development (CNPq) through scholarships to BLP through orientation by JBLS as part of the Post‐graduate Program in Aquatic Ecology and Fisheries (PPGEAP). Funding for this research was provided by CNPq (Grants 306233/2 009–6 to IS and 3007994/2020–1 to MH), FAPESPA (Grants PET0035/20 10 and APP064/20 11 to IS), and ICB (041/2020/ICB/UFPA to JBLS). This work was also supported in part by the project SAMBA (RCN—INTPART Project No. 322457).

Author information

Authors and Affiliations

Authors

Contributions

JBLS, BMLP, and FEA were involved in conceptualization. JBLS, AESR, YTCC, YF, LFSRF, UM, PWS, MH, JSR, and IS compiled data, methodology, formal analysis, writing—original draft, and review and editing. JBLS, FEA, BLP, AESR, and MH were involved in revisions, writing, and editing the final version.

Corresponding author

Correspondence to João Bráullio Luna Sales.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical review and approval were not required for this study, because this work does not contain any experimental studies with live animals.

Additional information

Responsible Editor: R. Villanueva.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sales, J.B.L., Anderson, F.E., Paiva, B.L. et al. The vicariant role of Caribbean formation in driving speciation in American loliginid squids: the case of Doryteuthis pealeii (Lesueur 1821). Mar Biol 171, 82 (2024). https://doi.org/10.1007/s00227-024-04391-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-024-04391-9

Keywords

Navigation