Skip to main content

Advertisement

Log in

Sediment geochemistry influences infaunal invertebrate community composition and population abundances

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Infaunal invertebrate communities are structured by various factors, including predation, resource availability, and environmental conditions. Given that these invertebrates live within sediment, it is not surprising that sediment properties play a critical role in many infaunal behaviours. When models explaining spatial and temporal variation in infaunal community composition are constructed using physical, biophysical, environmental, and sediment properties (salinity, detrital cover, elevation, particle size distribution, organic and water content, redox conditions, and penetrability), a considerable portion of the variation in the data is typically unaccounted for. This suggests that we do not fully understand all the variables that influence infaunal invertebrate communities. One suite of under-explored variables is the elemental composition/concentration of the sediments themselves. As such, we evaluated if sediment geochemistry improved model performance of the spatial variation in infaunal invertebrate communities on three intertidal mudflats in northern British Columbia, Canada. We observed that models including geochemistry data outperformed models that only included physical, biophysical, and environmental properties. Our results, therefore, suggest that some of the observed, and previously unaccounted for spatial variation in infaunal community composition may be a product of variation in sediment geochemistry. As such, sediment geochemistry should be accounted for when studying infaunal communities and assessing human impacts upon intertidal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be shared upon reasonable request.

References

  • Amoozadeh E, Malek M, Rashidinejad R, Nabavi S, Karbassi M, Ghayoumi R, Ghorbanzadeh-Zafarani G, Salehi H, Sures B (2014) Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environ Sci Pollut Res 21:2386–2395

    Article  CAS  Google Scholar 

  • Anderson M, Gorley RN, Clarke RK (2008) Permanova+ for Primer: Guide to software and statistical methods. PRIMER-E Ltd Plymouth, United Kingdom

    Google Scholar 

  • Bábek O, Grygar TM, Faměra M, Hron K, Nováková T, Sedláček J (2015) Geochemical background in polluted river sediments: how to separate the effects of sediment provenance and grain size with statistical rigour? CATENA 135:240–253

    Article  Google Scholar 

  • Barbeau M, Grecian L, Arnold E, Sheahan D, Hamilton D (2009) Spatial and temporal variation in the population dynamics of the intertidal amphipod Corophium volutator in the upper Bay of Fundy, Canada. J Crustac Biol 29:491–506

    Article  Google Scholar 

  • Beninger PG, Boldina I, Katsanevakis S (2012) Strengthening statistical usage in marine ecology. J Exp Mar Biol Ecol 426:97–108

    Article  Google Scholar 

  • Blaise C, Gagné F, Ferard J, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Enviro Toxicol 23:591–598

    Article  CAS  Google Scholar 

  • Borja A, Dauer DM, Diaz RJ, Llansó RJ, Muxika I, Rodriguez JG, Schaffner L (2008) Assessing estuarine benthic quality conditions in Chesapeake Bay: a comparison of three indices. Ecol Ind 8:395–403

    Article  Google Scholar 

  • Bradshaw C, Kautsky U, Kumblad L (2012) Ecological stoichiometry and multi-element transfer in a coastal ecosystem. Ecosystems 15:591–603

    Article  CAS  Google Scholar 

  • Bringloe TT, Drolet D, Barbeau MA, Forbes MR, Gerwing TG (2013) Spatial variation in population structure and its relation to movement and the potential for dispersal in a model intertidal invertebrate. PLoS ONE 8:e69091

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2001) Kullback-Leibler information as a basis for strong inference in ecological studies. Wildl Res 28:111–119

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Verlag, New York

    Google Scholar 

  • Campbell L, Sizmur T, Juanes F, Gerwing TG (2019a) Passive reclamation of soft-sediment ecosystems on the North Coast of British Columbia. Canada J Sea Res 155:101796

    Article  Google Scholar 

  • Campbell L, Wood L, Allen Gerwing AM, Allen S, Sizmur T, Rogers M, Gray O, Drewes M, Juanes F, Gerwing TG (2019b) A rapid, non-invasive population assessment technique for marine burrowing macrofauna inhabiting soft sediments. Estuar Coast Shelf Sci 227:106343

    Article  Google Scholar 

  • Campbell L, Dudas SE, Juanes F, Allen Gerwing AM, Gerwing TG (2020) Invertebrate communities, sediment parameters, and food availability of intertidal soft-sediment ecosystems on the North Coast of British Columbia, Canada. J Nat Hist 54:919–945

    Article  Google Scholar 

  • Chapman P, Dexter R, Long uE, (1987) Synoptic measures of sediment contamination, toxicity and infaunal community composition (the sediment quality triad) in San Francisco Bay. Mar Ecol Prog Ser 37:75–96

    Article  CAS  Google Scholar 

  • Chiarelli R, Roccheri MC (2014) Marine invertebrates as bioindicators of heavy metal pollution. Open J Metal. https://doi.org/10.4236/ojmetal.2014.44011

    Article  Google Scholar 

  • Christensen B, Vedel A, Kristensen E (2000) Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non-suspension-feeding (N. virens) polychaetes. Mar Ecol Prog Ser 192:203–217

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2015) PRIMER v7: user manual/tutorial Primer-E Ltd, Plymouth, UK

  • Coblentz KE, Henkel JR, Sigel BJ, Taylor CM (2015) The use of laser diffraction particle size analyzers for inference on infauna-sediment relationships. Estuaries Coasts 38:699–702

    Article  Google Scholar 

  • Cowie PR, Widdicombe S, Austen MC (2000) Effects of physical disturbance on an estuarine intertidal community: field and mesocosm results compared. Mar Biol 136:485–495

    Article  Google Scholar 

  • Cox KD, Gerwing TG, Macdonald T, Hessing-Lewis M, Millard-Martin B, Command RJ, Juanes F, Dudas SE (2019) Infaunal community responses to ancient clam gardens. ICES J Mar Sci 76:2362–2373

    Article  Google Scholar 

  • Das P, Xenopoulos MA, Metcalfe CD (2013) Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Bull Environ Contam Toxicol 91:76–82

    Article  CAS  Google Scholar 

  • Dashtgard SE, Pearson NJ, Gingras MK (2014) Sedimentology, ichnology, ecology and anthropogenic modification of muddy tidal flats in a cold-temperate environment: Chignecto Bay, Canada. Geol Soc, London, Spec Publ 388:229–245

    Article  Google Scholar 

  • De Backer A, Van Coillie F, Montserrat F, Provoost P, Van Colen C, Vincx M, Degraer S (2011) Bioturbation effects of Corophium volutator: importance of density and behavioural activity. Estuar Coast Shelf Sci 91:306–313

  • Delgado P, Hensel P, Baldwin A (2018) Understanding the impacts of climate change: an analysis of inundation, marsh elevation, and plant communities in a tidal freshwater marsh. Estuaries Coasts 41:25–35

    Article  CAS  Google Scholar 

  • Diaz RJ, Trefry JH (2006) Comparison of sediment profile image data with profiles of oxygen and Eh from sediment cores. J Mar Syst 62:164–172

    Article  Google Scholar 

  • Drolet D, Coffin MRS, Barbeau MA, Hamilton DJ (2013) Influence of intra-and interspecific interactions on short-term movement of the amphipod Corophium volutator in varying environmental conditions. Estuaries Coasts 36:1–11

    Article  Google Scholar 

  • Drylie TP, Lohrer AM, Needham HR, Pilditch CA (2020) Taxonomic and functional response of estuarine benthic communities to experimental organic enrichment: consequences for ecosystem function. J Exp Mar Biol Ecol 532:151455

    Article  Google Scholar 

  • Eccles KM, Pauli B, Chan HM (2020) Geospatial analysis of the patterns of chemical exposures among biota in the Canadian Oil Sands Region. PLoS ONE 15:e0239086

    Article  CAS  Google Scholar 

  • Einfeldt AJ, Addison JA (2013) Hydrology influences population genetic structure and connectivity of the intertidal amphipod Corophium volutator in the northwest Atlantic. Mar Biol 160:1015–1027

    Article  Google Scholar 

  • Ferraro SP, Cole FA (2012) Ecological periodic tables for benthic macrofaunal usage of estuarine habitats: insights from a case study in Tillamook Bay, Oregon, USA. Estuar Coast Shelf Sci 102:70–83

    Article  Google Scholar 

  • Flach EC, Beukema JJ (1995) Density-governing mechanisms in populations of the lugworm Arenicola marina on tidal flats. Oceanogr Lit Rev 42:139–149

  • Floyd T, Williams J (2004) Impact of green crab (Carcinus maenas L.) predation on a population of soft-shell clams (Mya arenaria L.) in the southern Gulf of St. Lawrence J Shellfish Res 23:457–463

    Google Scholar 

  • Fukuyama AK, Shigenaka G, Coats DA (2014) Status of intertidal infaunal communities following the Exxon Valdez oil spill in Prince William Sound, Alaska. Mar Pollut Bull 84:56–69

    Article  CAS  Google Scholar 

  • Gerwing TG, Allen Gerwing AM, Drolet D, Hamilton DJ, Barbeau MA (2013) Comparison of two methods of measuring the depth of the redox potential discontinuity in intertidal mudflat sediments. Mar Ecol Prog Ser 487:7–13

    Article  CAS  Google Scholar 

  • Gerwing TG, Allen Gerwing AM, Hamilton DJ, Barbeau MA (2015a) Apparent redox potential discontinuity (aRPD) depth as a relative measure of sediment oxygen content and habitat quality. Int J Sedim Res 30:74–80. https://doi.org/10.1016/S1001-6279(15)60008-7

    Article  Google Scholar 

  • Gerwing TG, Drolet D, Barbeau MA, Hamilton DJ, Allen Gerwing AM (2015b) Resilience of an intertidal infaunal community to winter stressors. J Sea Res 97:40–49. https://doi.org/10.1016/j.seares.2015.01.001

    Article  Google Scholar 

  • Gerwing TG, Drolet D, Hamilton DJ, Barbeau MA (2016) Relative importance of biotic and abiotic forces on the composition and dynamics of a soft-sediment intertidal community. PLoS ONE 11(11):e0147098

    Article  Google Scholar 

  • Gerwing TG, Allen Gerwing AM, Macdonald T, Cox K, Juanes F, Dudas SE (2017a) Intertidal soft-sediment community does not respond to disturbance as postulated by the intermediate disturbance hypothesis. J Sea Res 129:22–28

    Article  Google Scholar 

  • Gerwing TG, Gerwing AMA, Cox K, Juanes F, Dudas SE (2017b) Relationship between apparent redox potential discontinuity (aRPD) depth and environmental variables in soft-sediment habitats. Int J Sedim Res 32:472–480

    Article  Google Scholar 

  • Gerwing TG, Hamilton DJ, Barbeau MA, Haralampides KA, Yamazaki G (2017c) Short-term response of a downstream marine system to the partial opening of a tidal-river causeway. Estuaries Coasts 40:717–725. https://doi.org/10.1007/s12237-016-0173-2

    Article  CAS  Google Scholar 

  • Gerwing TG, Allen Gerwing AM, Allen S, Campbell L, Rogers M, Gray O, Drewes M, Juanes F (2018a) Potential impacts of logging on intertidal infaunal communities within the Kitimat river estuary. J Nat Hist 52:2833–2855

    Article  Google Scholar 

  • Gerwing TG, Cox K, Allen Gerwing AM, Carr-Harris CN, Dudas SE, Juanes F (2018b) Depth to the apparent redox potential discontinuity (aRPD) as a parameter of interest in marine benthic habitat quality models. Int J Sedim Res 33:472–480

    Article  Google Scholar 

  • Gerwing TG, Barbeau MA, Hamilton DJ, Allen Gerwing AM, Sinclair J, Campbell L, Davies MM, Harvey B, Juanes F, Dudas SE (2020a) Assessment of sediment penetrability as an integrated in situ measure of intertidal soft-sediment conditions. Mar Ecol Prog Ser 648:67–78

    Article  Google Scholar 

  • Gerwing TG, Cox K, Allen Gerwing AM, Campbell L, Macdonald T, Dudas SE, Juanes F (2020b) Varying intertidal invertebrate taxonomic resolution does not influence ecological findings. Estuar Coast Shelf Sci 232:106516

    Article  Google Scholar 

  • Gerwing TG, Campbell L, Hamilton DJ, Barbeau MA, Dudas SE, Juanes F (Submitted) Structuring factors of an invertebrate community: assessing the relative importance of top down, bottom up, middle out, and abiotic variables Marine Biology

  • Gerwing TG, Allen Gerwing AM, Davies MM, Juanes F, Dudas SE (2022a) Required sampling intensity for community analyses of intertidal infauna to detect a mechanical disturbance. Environ Monit Assess 194:1–6

    Article  Google Scholar 

  • Gerwing TG, Dudas SE, Juanes F (2022b) Increasing misalignment of spatial resolution between investigative and disturbance scales alters observed responses of an infaunal community to varying disturbance severities. Estuar Coast Shelf Sci 265:107718

    Article  Google Scholar 

  • Ghasemi AF, Clements JC, Taheri M, Rostami A (2014) Changes in the quantitative distribution of Caspian Sea polychaetes: prolific fauna formed by non-indigenous species. J Great Lakes Res 40:692–698

    Article  Google Scholar 

  • Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. Journal of the Chemical Society (Resumed): 655–673

  • Hamilton DJ, Diamond AW, Wells PG (2006) Shorebirds, snails, and the amphipod Corophium volutator in the upper Bay of Fundy: top-down vs. bottom-up factors, and the influence of compensatory interactions on mudflat ecology. Hydrobiologia 567:285–306

    Article  Google Scholar 

  • Kalman J, Smith B, Bury N, Rainbow P (2014) Biodynamic modelling of the bioaccumulation of trace metals (Ag, As and Zn) by an infaunal estuarine invertebrate, the clam Scrobicularia plana. Aquat Toxicol 154:121–130

    Article  CAS  Google Scholar 

  • Karimi R, Folt CL (2006) Beyond macronutrients: element variability and multielement stoichiometry in freshwater invertebrates. Ecol Lett 9:1273–1283

    Article  Google Scholar 

  • Little S, Wood P, Elliott M (2017) Quantifying salinity-induced changes on estuarine benthic fauna: the potential implications of climate change. Estuar Coast Shelf Sci 198:610–625

    Article  Google Scholar 

  • Lu L, Grant J (2008) Recolonization of intertidal infauna in relation to organic deposition at an oyster farm in Atlantic Canada—a field experiment. Estuaries Coasts 31:767–775

    Article  CAS  Google Scholar 

  • Martinez-Colon M, Hallock P, Green-Ruiz C (2009) Strategies for using shallow-water benthic foraminifers as bioindicators of potentially toxic elements: a review. J Foramin Res 39:278–299

    Article  Google Scholar 

  • Mazzola A, Mirto S, La Rosa T, Fabiano M, Danovaro R (2000) Fish-farming effects on benthic community structure in coastal sediments: analysis of meiofaunal recovery. ICES J Marine Sci 57:1454–1461

    Article  Google Scholar 

  • Meadows PS, Murray JM, Meadows A, Wood DM, West FJ (1998) Microscale biogeotechnical differences in intertidal sedimentary ecosystems. Geol Soc, London, Spec Publ 139:349–366

    Article  Google Scholar 

  • Mejía-Saavedra J, Sánchez-Armass S, Santos-Medrano GE, Gonzáaaalez-Amaro R, Razo-Soto I, Rico-Martínez R, Díaz-Barriga F (2005) Effect of coexposure to DDT and manganese on freshwater invertebrates: pore water from contaminated rivers and laboratory studies. Environ Toxicol Chem 24:2037–2044

    Article  Google Scholar 

  • Menge B, Daley B, Wheeler P, Dahlhoff E, Sanford E, Strub P (1997) Benthic–pelagic links and rocky intertidal communities: bottom-up effects on top-down control? Proc Natl Acad Sci USA 94:14530

    Article  CAS  Google Scholar 

  • Mermillod-Blondin F, Rosenberg R (2006) Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat Sci 68:434–442

    Article  CAS  Google Scholar 

  • Musetta-Lambert JL, Scrosati RA, Keppel EA, Barbeau MA, Skinner MA, Courtenay SC (2015) Intertidal communities differ between breakwaters and natural rocky areas on ice-scoured Northwest Atlantic coasts. Mar Ecol Prog Ser 539:19–31

    Article  Google Scholar 

  • Nath NS, Bhattacharya I, Tuck AG, Schlipalius DI, Ebert PR (2011) Mechanisms of phosphine toxicity. J Toxicol 2011:494168

    Article  Google Scholar 

  • Norris GS, Gerwing TG, Barbeau MA, Hamilton DJ (2022) Using successional drivers to understand spatiotemporal dynamics in intertidal mudflat communities. Ecosphere 13(10):e4268. https://doi.org/10.1002/ecs2.4268

    Article  Google Scholar 

  • Ólafsson EB, Peterson CH, Ambrose WG Jr (1994) Does recruitment limitation structure populations and communities of macro-invertebrates in marine soft sediments: the relative significance of pre-and post-settlement processes. Oceanogr Mar Biol Annu Rev 32:65–109

    Google Scholar 

  • Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Annu Rev 16:229–331

    Google Scholar 

  • Pilditch CA, Leduc D, Nodder SD, Probert PK, Bowden DA (2015a) Spatial patterns and environmental drivers of benthic infaunal community structure and ecosystem function on the New Zealand continental margin. NZ J Mar Freshwat Res. https://doi.org/10.1080/00288330.2014.995678

    Article  Google Scholar 

  • Pilditch CA, Valanko S, Norkko J, Norkko A (2015b) Post-settlement dispersal: the neglected link in maintenance of soft-sediment biodiversity. Biol Let 11:20140795

    Article  Google Scholar 

  • Pinsino A, Matranga V, Roccheri MC (2012) Manganese: a new emerging contaminant in the environment. In: Environmental contamination, pp 17–36

  • Pourret O, Bollinger J-C (2018) ‘Heavy metals’-what to do now: to use or not to use? Sci Total Environ 610–611:419–420

    Article  Google Scholar 

  • Quintana CO, Kristensen E, Valdemarsen T (2013) Impact of the invasive polychaete Marenzelleria viridis on the biogeochemistry of sandy marine sediments. Biogeochemistry 115:95–109

    Article  CAS  Google Scholar 

  • Rubin SP, Miller IM, Foley MM, Berry HD, Duda JJ, Hudson B, Elder NE, Beirne MM, Warrick JA, McHenry ML (2017) Increased sediment load during a large-scale dam removal changes nearshore subtidal communities. PLoS ONE 12:e0187742

    Article  Google Scholar 

  • Sánchez-Moyano JE, García-Gómez JC (1998) The arthropod community, especially Crustacea, as a bioindicator in Algeciras Bay (Southern Spain) based on a spatial distribution. J Coastal Res 14:1119–1133

    Google Scholar 

  • Searle SR, Casella G, McCulloch CE (1992) Variance Components. John Wiley & Sons, New York

    Book  Google Scholar 

  • Sherman KM, Coull BC (1980) The response of meiofauna to sediment disturbance. J Exp Mar Biol Ecol 46:59–71

    Article  Google Scholar 

  • Sizmur T, Canário J, Edmonds S, Godfrey A, O’Driscoll NJ (2013) The polychaete worm Nereis diversicolor increases mercury lability and methylation in intertidal mudflats. Environ Toxicol Chem 32:1888–1895

    Article  CAS  Google Scholar 

  • Sizmur T, Campbell L, Dracott K, Jones M, O’Driscoll NJ, Gerwing TG (2019) Relationships between potentially toxic elements in intertidal sediments and their bioaccumulation by benthic invertebrates. PLoS ONE 14:e0216767

    Article  CAS  Google Scholar 

  • Smith SV (1984) Phosphorus versus nitrogen limitation in the marine environment. Limnol Oceanogr 29:1149–1160

    Article  CAS  Google Scholar 

  • Spencer K, Harvey G (2012) Understanding system disturbance and ecosystem services in restored saltmarshes: integrating physical and biogeochemical processes. Estuar Coast Shelf Sci 106:23–32

    Article  Google Scholar 

  • Teal L, Parker E, Solan M (2013) Coupling bioturbation activity to metal (Fe and Mn) profiles in situ. Biogeosciences 10:2365–2378

    Article  CAS  Google Scholar 

  • Thrush SF, Hewitt JE, Norkko A, Nicholls PE, Funnell GA, Ellis JI (2003) Habitat change in estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Mar Ecol Prog Ser 263:101–112

    Article  Google Scholar 

  • Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531

    Article  CAS  Google Scholar 

  • Underwood AJ, Fairweather PG (1989) Supply-side ecology and benthic marine assemblages. Trends Ecol Evol 4:16–20

    Article  CAS  Google Scholar 

  • Valdemarsen T, Kristensen E, Holmer M (2010) Sulfur, carbon, and nitrogen cycling in faunated marine sediments impacted by repeated organic enrichment. Mar Ecol Prog Ser 400:37–53

    Article  CAS  Google Scholar 

  • Virgin SDS, Beck AD, Boone LK, Dykstra AK, Ollerhead J, Barbeau MA, McLellan NR (2020) A managed realignment in the upper Bay of Fundy: community dynamics during salt marsh restoration over 8 years in a megatidal, ice-influenced environment. Ecol Eng 149:105713

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Waldock R, Rees H, Matthiessen P, Pendle M (1999) Surveys of the benthic infauna of the Crouch Estuary (UK) in relation to TBT contamination. J Mar Biol Assoc UK 79:225–232

    Article  Google Scholar 

  • Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393:1–12

    Article  Google Scholar 

  • Whiteway SA, Paine MD, Wells TA, DeBlois EM, Kilgour BW, Tracy E, Crowley RD, Williams UP, Janes GG (2014) Toxicity assessment in marine sediment for the Terra Nova environmental effects monitoring program (1997–2010). Deep Sea Res Part II 110:26–37

    Article  CAS  Google Scholar 

  • Williams GJ, Smith JE, Conklin EJ, Gove JM, Sala E, Sandin SA (2013) Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns. PeerJ 1:e81

    Article  Google Scholar 

  • Yool AJ, Grau SM, Hadfield MG, Jensen RA, Markell DA, Morse DE (1986) Excess potassium induces larval metamorphosis in four marine invertebrate species. Biol Bull 170:255–266

    Article  CAS  Google Scholar 

  • Yunker MB, Lachmuth CL, Cretney WJ, Fowler BR, Dangerfield N, White L, Ross PS (2011) Biota–sediment partitioning of aluminium smelter related PAHs and pulp mill related diterpenes by intertidal clams at Kitimat, British Columbia. Mar Environ Res 72:105–126

    Article  CAS  Google Scholar 

  • Zhang Y, Pe-Piper G, Piper DJ (2014) Sediment geochemistry as a provenance indicator: unravelling the cryptic signatures of polycyclic sources, climate change, tectonism and volcanism. Sedimentology 61:383–410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shaun Allen, Deborah Parker, Jayleen Starr and Zoey Starr for their assistance during data collection. Anne Dudley is acknowledged for assisting ICP-OES analysis. Andy Dodson is acknowledged for assisting ICP-MS analysis.

Funding

Funding for this work was provided by the Royal Geographical Society (TGG and TS), Kitsumkalum First Nation (TGG), an NSERC Engage grant (TGG and FJ), and a Mitacs Elevate grant to TGG. Cassiar Cannery provided accommodations onsite and access to study locations.

Author information

Authors and Affiliations

Authors

Contributions

TGG and TM designed the study, collected data, and wrote the paper. KD and LC helped collect data and write the paper. AMAG, MMD, JK, HMT helped analyze the data and write the paper. JK and SC helped analyze samples and write the paper. FJ and SED helped design the study, provided supervision, and write the paper.

Corresponding author

Correspondence to Travis G. Gerwing.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

No animal welfare approval was required as we were working with common invertebrates.

Additional information

Responsible Editor: M. Hüttel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerwing, T.G., Gerwing, A.M.A., Davies, M.M. et al. Sediment geochemistry influences infaunal invertebrate community composition and population abundances. Mar Biol 170, 4 (2023). https://doi.org/10.1007/s00227-022-04151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-022-04151-7

Keywords

Navigation