Skip to main content

Advertisement

Log in

Genetic diversification of intertidal gastropoda in an archipelago: the effects of islands, oceanic currents, and ecology

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Marine organisms with a planktonic larval stage can passively disperse long distance and are thus expected to have a wider distribution range and lower geographic variation. However, recent molecular phylogenetic studies have revealed that they often display a clear geographic genetic structure or even form a geographically fragmented species complex. These genetic divergences can be facilitated by the presence of dispersal barriers such as oceanic currents and/or by the limitation of suitable habitats. Using comprehensive phylogenetic analyses, we evaluate how such dispersal barriers shape genetic divergence and speciation in the intertidal snail genus Monodonta. Our phylogenetic analysis revealed various patterns of cladogenesis in Monodonta in East Asia. Genetic segregation between the Japanese and Ryukyu Archipelagos are detected in M. labio and M. perplexa perplexa. However, the relationship of geographical border and lineages does not correspond to those two because they show different habitat preference. M. labio distributed in the Japanese mainland is separated by the boundary corresponding to the point from which oceanic currents split into different directions. In contrast, species inhabiting various environments such as M. confusa are not genetically separated in Japan. In the peripheral oceanic Ogasawara Islands, two Monodonta species form each endemic lineage, although these two underwent different colonization processes to the islands. These findings suggest that the genus Monodonta has been genetically diversified around Japan, probably due to its correlations with dispersal ability, oceanic current, and habitat preferences. These factors may be effective causes for diversification of marine gastropods with a planktonic stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afsar N, Siddiqui G, Ayub Z (2013) Study of reproductive cycle of two Archaeogastropods, Turbo coronatus and Monodonta canalifera. Pak J Zool 45:459–467

    Google Scholar 

  • Asakura A, Nishihama S (1987) Studies on the biology and ecology of the intertidal animals of Chichijima Island in the Ogasawara (Bonin) Islands III: description, form and habitat of the trochid snail, Monodonta perplexa boninensis n. subsp. in comparison with those in Monodonta perplexa perplexa (Pilsbry). Venus 46:194–201

    Google Scholar 

  • Bird CE, Holland BS, Bowen BW, Toonen RJ (2011) Diversification of endemic sympatric limpets (Cellana spp.) in the Hawaiian Archipelago. Mol Ecol 20:2128–2141

    Article  Google Scholar 

  • Boehm JT, Woodall L, Teske PR, Lourie SA, Baldwin C, Waldman J, Hickerson M (2013) Marine dispersal and barriers drive Atlantic seahorse diversification. J Biogeogr 40:1839–1849. doi:10.1111/jbi.12127

    Google Scholar 

  • Bowen BW, Rocha LA, Toonen RJ, Karl SA (2013) The origins of tropical marine biodiversity. Trends Ecol Evol 28:359–366

    Article  Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    Article  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  Google Scholar 

  • Claremont M, Williams ST, Barraclough TG, Reid DG (2011) The geographic scale of speciation in a marine snail with high dispersal potential. J Biogeogr 38:1016–1032

    Article  Google Scholar 

  • Colgan DJ, Ponder WF, Beacham E, Macaranas JM (2003) Gastropod phylogeny based on six fragments from four genes representing coding or non-coding and mitochondrial or nuclear DNA. Molluscan Res 23:123–148

    Article  CAS  Google Scholar 

  • Collin R (2001) The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae). Mol Ecol 10:2249–2262

    Article  CAS  Google Scholar 

  • Cunha RL, Assis JM, Madeira C, Seabra R, Lima FP, Lopes EP, Williams ST, Castilho R (2017) Drivers of Cape Verde archipelagic endemism in keyhole limpets. Sci Rep 7:41817. doi:10.1038/srep41817

    Article  CAS  Google Scholar 

  • David GH (2015) An annotated catalogue and bibliography of the taxonomy, synonymy and distribution of the recent Vetigastropoda of South Africa (Mollusca). Zootaxa 4049:1–98

    Article  Google Scholar 

  • Donald KM, Kennedy M, Spencer HG (2005) The phylogeny and taxonomy of austral monodontine topshells (Mollusca: Gastropoda: Trochidae), inferred from DNA sequences. Mol Phylogenet Evol 37:474–483

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  Google Scholar 

  • Frey MA (2010) The relative importance of geography and ecology in species diversification: evidence from a tropical marine intertidal snail (Nerita). J Biogeogr 37:1515–1528

    Google Scholar 

  • Fujikura K, Lindsay D, Kitazato H, Nishida S, Shirayama Y (2010) Marine biodiversity in Japanese waters. PLoS ONE 5:e11836. doi:10.1371/journal.pone.0011836

    Article  Google Scholar 

  • Fukuda H (1993) Marine gastropoda (Mollusca) of the Ogasawara Islands (Bonin) Islands. Part 1: Archaeogastropoda and Neotaenioglossa. Ogasawara Res 19:1–85

    Google Scholar 

  • Gallaher T, Callmander MW, Buerki S, Setsuko S, Keeley SC (2016) Navigating the ‘broad freeway’: ocean currents and inland isolation drive diversification in the Pandanus tectorius complex (Pandanaceae). J Biogeogr. doi:10.1111/jbi.12933

    Google Scholar 

  • Griekspoor A, Groothuis T (2005) 4peaks. Ver. 1.7.1. http://nucleobytes.com/4peaks/

  • Hashino T, Tomiyama K (2013) Life history of Monodonta labio confusa Tapprone-Canefri, 1874 in Kagoshima Bay, Kyushu, Japan and age estimation based on annual ring analysis of shell. Nat Kagoshima 39:143–155

    Google Scholar 

  • Higo S, Callomon P, Goto Y (1999) Catalogue and bibliography of the marine shell-bearing Mollusca of Japan. Elle Scientific Publications, Japan

    Google Scholar 

  • Hollander J, Collyer ML, Adams DC, Johannesson K (2006) Phenotypic plasticity in two marine snails: constraints superseding life history. J Evol Biol 19:1861–1872

    Article  CAS  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267

    Article  CAS  Google Scholar 

  • Iijima A (2001) Growth of the intertidal snail, Monodonta labio (Gastropoda, Prosobranchia) on the Pacific coast of Central Japan. Bull Mar Sci 68:27–36

    Google Scholar 

  • Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–106

    Article  CAS  Google Scholar 

  • Jablonski D, Belanger CL, Berke SK, Huang S, Krug AZ et al (2013) Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc Natl Acad Sci 110:10487–10494

    Article  CAS  Google Scholar 

  • Jobb G (2008) TREEFINDER. version of October 2008. http://www.treefinder.de

  • Johannesson B, Johannesson K (1996) Population differences in behaviour and morphology in the snail Littorina saxatilis: phenotypic plasticity or genetic differentiation? J Zool 240:475–493

    Article  Google Scholar 

  • Kelly RP, Palumbi SR (2010) Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS ONE 5:e8594. doi:10.1371/journal.pone.0008594

    Article  Google Scholar 

  • Kitaura J, Nishida M, Wada K (2002) Genetic and behavioral diversity in the Macrophthalmus japonicus species complex (Crustacea: Brachyura: Ocypodidae). Mar Biol 140:1–8

    Article  CAS  Google Scholar 

  • Kojima S, Segawa R, Hayashi I (1997) Genetic differentiation among populations of the Japanese turban shell Turbo (Batillus) cornutus corresponding to warm current. Mar Ecol Prog Ser 150:149–155

    Article  Google Scholar 

  • Kojima S, Segawa R, Hayashi I (2000) Stability of the courses of the warm coastal currents along the Kyushu Island suggested by the population structure of the Japanese turban shell Turbo (Batillus) cornutus. J Oceanogr 56:601–604

    Article  Google Scholar 

  • Kojima S, Kamimura S, Kimura T, Hayashi I, Iijima A, Furota T (2003) Phylogenetic Relationships between the Tideland Snails Batillaria flectosiphonata in the Ryukyu Islands and B. multiformis in the Japanese Islands. Zool Sci 20:1423–1433

    Article  CAS  Google Scholar 

  • Kojima S, Kamimura S, Iijima A et al (2006) Molecular phylogeny and population structure of tideland snails in the genus Cerithidea around Japan. Mar Biol 149:525–535

    Article  CAS  Google Scholar 

  • Kurihara T, Shikatani M, Nakayama K, Nishida M (2006) Proximate mechanisms causing morphological variation in a turban snail among different shores. Zool Sci 23:999–1008

    Article  CAS  Google Scholar 

  • Kurozumi T, Asakura A (1994) Marine molluscs from the northern Mariana Islands, Micronesia. Nat Hist Res Spec Issue 1:121–168

    Google Scholar 

  • Lee T, Foighil Ó (2005) Placing the floridian marine genetic disjunction into a regional evolutionary context using the scorched mussel, brachidontes exustus, species complex. Evolution 59:2139–2158

    Article  CAS  Google Scholar 

  • Littlewood DTJ, Curini-Galletti M, Herniou EA (2000) The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Mol Phylogenet Evol 16:449–466

    Article  CAS  Google Scholar 

  • Meyer CP (2003) Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biol J Linnean Soc 79:401–459. doi:10.1046/j.1095-8312.2003.00197.x

    Article  Google Scholar 

  • Meyer CP, Jonathan BG, Paulay G (2005) Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution 59:113–125

    Article  Google Scholar 

  • Min DK (2004) Mollusks in Korea (revised supplementary edition). Min Molluscan Research Institute, Korea

    Google Scholar 

  • Nakano D, Nagoshi M (1984) Growth and death in an intertidal population of Monodonta labio (Linnaeus), (Prosobranchia, Trochidae). Venus 43:60–71

    Google Scholar 

  • Nakano T, Takahashi K, Ozawa T (2007) Description of an endangered new species of Lunella (Gastropoda:Turbinidae) from the Ogasawara Islands, Japan. Venus 66:1–10

    Google Scholar 

  • Nakano T, Yazaki I, Kurokawa M, Yamaguchi K, Kuwasawa K (2009) The origin of the endemic patellogastropod limpets of the Ogasawara Islands in the northwestern Pacific. J Molluscan Stud 75:87–90

    Article  Google Scholar 

  • Nixon KC (1999) The parsimony ratchet: a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  • Ogoh K, Ohmiya Y (2005) Biogeography of luminous marine ostracod driven irreversibly by the Japan current. Mol Biol Evol 22:1543–1545

    Article  CAS  Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  • Palumbi SR, Martin AP, Romano SL, Mcmillan WO, Stice L, Grabowski G (1991) The simple fool’s guide to PCR. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu

    Google Scholar 

  • Paulay G, Meyer CP (2002) Diversification in the tropical Pacific: comparisons between marine and terrestrial systems and the importance of founder speciation. Integr Comp Biol 42:922–934

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  Google Scholar 

  • Saito H (2000) Family chitonidae. In: Okutani K (ed) Marine mollusks in Japan. Tokai University Press, Tokyo

    Google Scholar 

  • Sasaki R (1985) Assessment and appearance of planktonic larvae of Haliotis (Nordotis) discus hannai around Kesennuma Bay. The aquaculture 32:199–206

    Google Scholar 

  • Sasaki T (2000) Family chitonidae. In: Okutani K (ed) Marine mollusks in Japan. Tokai University Press, Tokyo

    Google Scholar 

  • Takada Y (1992) Tide level variation of morph frequency and size structure in Monodonta labio (Gastropoda: Trochidae) at several boulder shores in Amakusa. Venus 51:187–195

    Google Scholar 

  • Takada Y (1995) Variation of growth rate with tidal level in the gastropod Monodata labio on a boulder shore. Mar Ecol Prog Ser 117:103–110

    Article  Google Scholar 

  • Takada Y (1996a) Seasonal and vertical variations in size structure and recruitment of the intertidal gastropod, Monodonta labio. Venus 55:105–113

    Google Scholar 

  • Takada Y (1996b) Vertical variation in fecundity of the intertidal gastropod Monodonta labio caused by different growth rates between tidal zones. Ecol Res 11:371–379

    Article  Google Scholar 

  • Takada Y (1996c) Vertical migration during the life history of the intertidal gastropod Monodonta labio on a boulder shore. Mar Ecol Prog Ser 130:117–123

    Article  Google Scholar 

  • Takada Y (2001) Activity patterns of the herbivorous gastropod Monodonta labio on a boulder shore at Amakusa, Japan. Venus 60:105–113

    Google Scholar 

  • Takenouchi K (1985) An analysis of shell character and distribution of the intertidal trochid, Monodonta labio (Linné) (Gastropoda: Prosobranchia). Venus 44:110–122

    Google Scholar 

  • Tanabe AS (2008) Phylogears version 1.5.2009.12.29. http://www.fifthdimension.jp/

  • Tanabe AS (2011) Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol Ecol Resour 11:914–921

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101

    Article  CAS  Google Scholar 

  • Vos RA (2003) Accelerated likelihood surface exploration: the likelihood ratchet. Syst Biol 52:368–373

    Article  CAS  Google Scholar 

  • Williams ST (2007) Origins and diversification of Indo-West Pacific marine fauna: evolutionary history and biogeography of turban shells (Gastropoda, Turbinidae). Biol J Linnean Soc 92:573–592. doi:10.1111/j.1095-8312.2007.00854.x

    Article  Google Scholar 

  • Williams ST, Reid DG, Littlewood DTJ (2003) A molecular phylogeny of the Littorininae (Gastropoda: Littorinidae): unequal evolutionary rates, morphological parallelism, and biogeography of the Southern Ocean. Mol Phylogenet Evol 28:60–86

    Article  CAS  Google Scholar 

  • Williams ST, Donald KM, Spencer HG, Nakano T (2010) Molecular systematics of the marine gastropod families Trochidae and Calliostomatidae (Mollusca: Superfamily Trochoidea). Mol Phylogenet Evol 54:783–809

    Article  CAS  Google Scholar 

  • Williams ST, Apte D, Ozawa T, Kaligis F, Nakano T (2011) Speciation and dispersal along continental coastlines and island arcs in the indo-west pacific turbinid gastropod genus Lunella. Evolution 65:1752–1771

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Hirano and T. Saito for sampling, technical support and suggestive advice on this study. We also thank K. Kawakami and S. Wada for investigation in the Ogasawara Islands and H. Fukuda, Y. Kameda, Y. Miki, S. Takeda, T. Ohkoba, T. Aota, S. Uchida, D. Ando, M. Uesaka, T. Sato, M. Taguchi, C. Nishimine, R. Nakajima, M. Yamazaki and K. Yamazaki for sampling. We thank T. Yamazaki for checking English grammar before using English editing service. We are grateful to two anonymous reviewers and the editor due to their helpful comments to the initial manuscript. This study was supported by JSPS KAKENHI Grant Number 17H04611 and was partially supported by Tohoku Ecosystem-Associated Marine Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daishi Yamazaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: T. Reusch.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2017_3207_MOESM1_ESM.pdf

Supplementary material 1 (PDF 512 kb) Fig. 1S Phylogenetic trees inferred from a combined data set of mtDNA sequences (COI + 16S) using BI analysis. Numbers on branches show Bayesian posterior probabilities. The numbers of nodes show the sampling locality number. Vertical bars on the right of the tree show each clade. Fig. 2S Phylogenetic trees inferred from a combined data set of mtDNA sequences (COI + 16S) using ML analysis. Numbers on branches show maximum likelihood bootstrap values. The numbers of nodes show the sampling locality number. Vertical bars on the right of the tree show each clade. Table. 1S Information of samples in the present study. Table. 2S Sampling data of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, D., Miura, O., Ikeda, M. et al. Genetic diversification of intertidal gastropoda in an archipelago: the effects of islands, oceanic currents, and ecology. Mar Biol 164, 184 (2017). https://doi.org/10.1007/s00227-017-3207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3207-9

Navigation