Skip to main content
Log in

Genetic variation in the massive coral Porites lobata

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In recent years, corals have faced increasing anthropogenic disturbances, leading to regional or local reduction in coral species diversity and reduction in genetic variation. The ability of corals to withstand anthropogenic stress, however, differs between genotypes. To be able to estimate survival and recovery potentials, understanding coral genetic variation is therefore of prime scientific interest. This study investigated genetic variation in the massive coral Porites lobata from Moorea, French Polynesia. Colonies were sampled in “family” patches (one large colony surrounded by medium and small sized individuals). We analyzed the allelic diversity of different patches as well as the genotypic variability and relatedness of individual coral colonies. Additionally, intracolonial genetic variability, the harboring of more than a single genotype within a single colony (individual), was analyzed in this species for the first time. In total, 120 coral colonies from three different size clusters (small, medium and large) were investigated with nine microsatellite markers. The three size clusters were used as an assumed proxy for age (juvenile, young adult and adult). The results showed high levels of genetic variation and low levels of relatedness among and within different size classes. All colonies had individual genotypes, suggesting predominantly sexual reproduction. Intracolonial genetic variability was detectable in 25% of the large adults, 15.6% of young adult colonies and 8.8% of juvenile colonies. This is the first evidence of heterogeneous coral colonies in different age classes of P. lobata. The high levels of genetic variation found between and within individuals indicate that P. lobata might have high levels of potential to adapt to a range of natural and anthropogenic disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, De Loma TL, Penin L, Thibaut L, Vidal-Dupiol J, Salvat B, Galzin R (2009) Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28(3):775–780

    Article  Google Scholar 

  • Adjeroud M, Guérécheau A, Vidal-Dupiol J, Flot JF, Arnaud-Haond S, Bonhomme F (2014) Genetic diversity, clonality and connectivity in the scleractinian coral Pocillopora damicornis: a multi-scale analysis in an insular, fragmented reef system. Mar Biol 161(3):531–541

    Article  Google Scholar 

  • Amar K, Chadwick NE, Rinkevich B (2008) Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny. BMC Evol Biol 8:126

    Article  Google Scholar 

  • Arnaud-Haond S, Belkhir K (2007) Genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54(5):1590–1605

    Article  CAS  Google Scholar 

  • Ayre DJ, Hughes TP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273–278

    Article  Google Scholar 

  • Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Ann Rev Ecol Evol Syst 40:551–571

    Article  Google Scholar 

  • Barshis DJ, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkeland C (2010) Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Mol Ecol 19(8):1705–1720

    Article  CAS  Google Scholar 

  • Baums IB, Miller WM, Hellberg ME (2006) Geographical variation in clonal structure in a reef-building Caribbean coral, Acropora palmata. Ecol Monogr 76:503–519

    Article  Google Scholar 

  • Baums IB, Boulay JN, Polato NR, Hellberg ME (2012) No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata. Mol Ecol 21(22):5418–5433

    Article  Google Scholar 

  • Boulay JN, Cortés J, Nivia-Ruiz J, Baums IB (2012) High genotypic diversity of the reef-building coral Porites lobata (Scleractinia: Poritidae) in Isla del Coco National Park, Costa Rica. Rev Biol Trop 60:279–292

    Google Scholar 

  • Boulay JN, Hellberg ME, Cortés J, Baums IB (2014) Unrecognized coral species diversity masks differences in functional ecology. Proc R Soc Lond B Biol Sci 281(1776):20131580

    Article  Google Scholar 

  • Bozec YM, Mumby PJ (2015) Synergistic impacts of global warming on the resilience of coral reefs. Philos Trans R Soc B 370(1659):20130267

    Article  Google Scholar 

  • Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Change Biol 14:529–538

    Article  Google Scholar 

  • Cortés J (1997) Biology and geology of eastern Pacific coral reefs. Coral Reefs 16:39–46

    Article  Google Scholar 

  • Davies S, Treml EA, Kenkel CD, Matz MV (2015) Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific Ocean. Mol Ecol 24(1):70–82

    Article  CAS  Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119

    Article  Google Scholar 

  • Earl DA, von Holdt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Gen Res 4(2):359–361

    Article  Google Scholar 

  • Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16(12):551–558

    Article  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Forsman ZH, Barshis DJ, Hunter CL, Toonen RJ (2009) Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol Biol 9:45

    Article  Google Scholar 

  • Forsman ZH, Wellington GM, Fox GE, Toonen RJ (2015) Clues to unraveling the coral species problem: distinguishing species from geographic variation in Porites across the Pacific with molecular markers and microskeletal traits. PeerJ 3:e751

    Article  Google Scholar 

  • Gattuso JP, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Turley C (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349:6243

    Article  Google Scholar 

  • Glynn PW, Colley SB, Eakin CM, Smith DB, Cortés J, Gassman NJ, Guzman HM, Delrosario JB, Feingold JS (1994) Reef coral reproduction in the Eastern Pacific—Costa-Rica, Panama, and Galapagos-Islands (Ecuador). Mar Biol 118:191–208

    Article  Google Scholar 

  • Goudet J (1999) PCAGEN, a program to perform a principal component analysis (PCA) on genetic data (version 1.2). Population Genetics Laboratory, University of Lausanne, Lausanne

    Google Scholar 

  • Graham EM, Baird AH, Connolly SR (2008) Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27(3):529–539

    Article  Google Scholar 

  • Harrison PL (2011) Sexual reproduction of scleractinian corals. Springer, Dordrecht

    Book  Google Scholar 

  • Hench JL, Leichter JJ, Monismith SG (2008) Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol Oceanogr 53(6):2681–2694

    Article  Google Scholar 

  • Hughes TP (1984) Population dynamics based on individual size rather than age: a general model with a reef coral example. Am Nat 778–795. doi:10.1086/284239

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806

    Article  CAS  Google Scholar 

  • Jameson SC, Cairns SD (2012) Neotypes for Porites porites (Pallas, 1766) and Porites divaricata and remarks on other western Atlantic species of Porites (Anthozoa: Scleractinia). Proc Biol Soc Wash 125(2):189–207

    Article  Google Scholar 

  • Kaiser MJ, Attrill MJ, Jennings S, Thomas DN, Barnes DKA, Brierley AS (2005) Marine ecology—processes, systems, and impacts. Oxford University Press, Oxford

    Google Scholar 

  • Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6(2):576

    Article  CAS  Google Scholar 

  • Lasker HR, Coffroth MA (1999) Responses of clonal reef taxa to environmental change. Am Zool 39(1):92–103

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1992) Comparisons of skeletal density variations in Porites from the central Great Barrier Reef. J Exp Mar Biol Ecol 155(1):1–25

    Article  Google Scholar 

  • Lough JM, Cooper TF (2011) New insights from coral growth band studies in an era of rapid environmental change. Earth Sci Rev 108:170–184

    Article  CAS  Google Scholar 

  • Maier E, Tollrian R, Nürnberger B (2001) Development of species-specific markers in an organism with endosymbionts: microsatellites in the scleractinian coral Seriatopora hystrix. Mol Ecol Notes 18:157–159

    Google Scholar 

  • Maier E, Buckenmaier A, Tollrian R, Nürnberger B (2011) Intracolonial genetic variation in the scleractinian coral Seriatopora hystrix. Coral Reefs 31(2):505–517

    Article  Google Scholar 

  • Miller KJ, Ayre DJ (2008) Population structure is not a simple function of reproductive mode and larval type: insights from tropical corals. J Anim Ecol 77:713–724

    Article  Google Scholar 

  • Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA (1995) Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30(3):450–458

    Article  CAS  Google Scholar 

  • Okubo N, Motokawa T, Omori M (2007) When fragmented coral spawn? Effect of size and 630 timing on survivorship and fecundity of fragmentation in Acropora formosa. Mar Biol 151:353–363

    Article  Google Scholar 

  • Omori M, Fukami H, Kobinata H, Hatta M (2001) Significant drop of fertilization of Acropora corals in 1999: an after-effect of heavy coral bleaching? Limnol Oceanogr 46(3):704–706

    Article  Google Scholar 

  • Orive ME (2001) Somatic mutations in organisms with complex life histories. Theor Popul Biol 59:235–249

    Article  CAS  Google Scholar 

  • Otto SP, Hastings IM (1998) Mutation and selection within the individual. Genetica 102(103):507–524

    Article  Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:146–158

    Article  Google Scholar 

  • Pandolfi JM, Kiessling W (2014) Gaining insights from past reefs to inform understanding of coral reef response to global climate change. Cur Opin Environ Sustain 7:52–58

    Article  Google Scholar 

  • Pineda-Krch M, Lehtilä K (2004) Costs and benefits of genetic heterogeneity within organisms. J Evol Biol 17(6):1167–1177

    Article  CAS  Google Scholar 

  • Polato NR, Concepcion GT, Toonen RJ, Baums IB (2010) Isolation by distance across the Hawaiian Archipelago in the reef-building coral Porites lobata. Mol Ecol 19(21):4661–4677

    Article  CAS  Google Scholar 

  • Prada C, De Biasse MB, Neigel JE, Yednock B, Stake JL, Forsman ZH, Baums IB, Hellberg ME (2014) Genetic species delineation among branching Caribbean Porites corals. Coral Reefs 33(4):1019–1030

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Puill-Stephan E, Willis BL, van Herwerden L, van Oppen MJH (2009) Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef. PLoS ONE 4(11):e7751

    Article  Google Scholar 

  • Puill-Stephan E, Willis BL, Abrego D, Raina JB, van Oppen MJH (2012) Allorecognition maturation in the broadcast-spawning coral Acropora millepora. Coral Reefs 31(4):1019–1028

    Article  Google Scholar 

  • Raymundo LJ, Maypa AP (2004) Getting bigger faster: mediation of size-specific mortality via fusion in juvenile coral transplants. Ecol Appl 14:281–295

    Article  Google Scholar 

  • Rinkevich B (2006) Restoration strategies for coral reefs damaged by recreational activities: the use of sexual and asexual recruits. Restor Ecol 3(4):241–251

    Article  Google Scholar 

  • Rinkevich B, Weissman IL (1992) Chimeras vs. genetically homogeneous individuals—potential fitness costs and benefits. Oikos 63:119–124

    Article  Google Scholar 

  • Rosenberg NA (2003) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Santelices B (1999) How many kinds of individual are there? Trends Ecol Evol 14:152–155

    Article  Google Scholar 

  • Santelices B, Alvarado JL, Flores V (2010) Size increments due to interindividual fusions: how much and for how long? J Phycol 46(4):685–692

    Article  Google Scholar 

  • Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N (2014) With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linn Soc 170:1–33

    Article  Google Scholar 

  • Schweinsberg M, González Pech RA, Tollrian R, Lampert KP (2014) Transfer of intracolonial genetic variability through gametes in Acropora hyacinthus corals. Coral Reefs 33(1):77–87

    Article  Google Scholar 

  • Schweinsberg M, Weiss LC, Striewski S, Tollrian R, Lampert KP (2015) More than one genotype: how common is intracolonial genetic variability in scleractinian corals? Mol Ecol 24(11):2673–2685

    Article  Google Scholar 

  • Shearer TL, Coffroth MA (2004) Isolation of microsatellite loci from the scleractinian corals, Montastraea cavernosa and Porites astreoides. Mol Ecol Notes 4(3):435–437

    Article  CAS  Google Scholar 

  • Smith LW, WirshingHH Baker AC, Birkeland C (2008) Environmental versus genetic influences on growth rates of the corals Pocillopora eydouxi and Porites lobata (Anthozoa: Scleractinia). Pac Sci 62(1):57–69

    Article  Google Scholar 

  • Torda G, Lundgren P, Willis BL, van Oppen MJH (2013a) Genetic assignment of recruits reveals short- and long-distance larval dispersal in Pocillopora damicornis on the Great Barrier Reef. Mol Ecol 22(23):5821–5834

    Article  CAS  Google Scholar 

  • Torda G, Schmidt-Roach S, Peplow LM, Lundgren P, van Oppen MJH (2013b) A rapid genetic assay for the identification of the most common Pocillopora damicornis genetic lineages on the Great Barrier Reef. PLoS ONE 8:1–5

    Article  Google Scholar 

  • Trapon ML, Pratchett MS, Penin L (2011) Comparative effects of different disturbances in coral reef habitats in Moorea, French Polynesia. J Mar Biol 201:1–11

    Article  Google Scholar 

  • Underwood JN, Smith LD, Van Oppen MJH, Gilmour JP (2007) Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol Ecol 16:771–784

    Article  CAS  Google Scholar 

  • Van Oppen MJH, Souter P, Howells EJ, Heyward A, Berkelmans R (2011) Novel genetic diversity through somatic mutations: fuel for adaptation of reef corals? Diversity 3(4):405–423

    Article  Google Scholar 

  • Veron JEN, Stafford-Smith M (2000) Corals of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Waples RS (2014) Testing for Hardy Weinberg proportions: have we lost the plot? J Hered 106(1):1–19

    Article  Google Scholar 

  • Warner PA, van Oppen MJH, Willis BL (2015) Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity. Mol Ecol 24:2993–3008

    Article  Google Scholar 

  • Work TM, Forsman ZH, Szabó Z, Lewis TD, Aeby GS, Toonen RJ (2011) Inter-specific coral chimerism: genetically distinct multicellular structures associated with tissue loss in Montipora capitata. PLoS ONE 6:e22869

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Lukas Müller and Suntke Gerriets for providing help with preliminary microsatellite data analyses and the literature research. Robert Sigl helped in collecting samples in the field. We thank the staff of the Gump Research Station in Moorea for their cooperation and logistic support. The Haut-Commissariat de la République en Polynésie francaise kindly issued permit No. FR1398700143-E to sample Porites lobata. We thank two anonymous reviewers for helpful comments on this manuscript.

Funding

This study was funded by the Deutsche Forschungsgemeinschaft (TO 171/8-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schweinsberg.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: S. Uthicke.

Reviewed by S. Schmidt-Roach and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweinsberg, M., Tollrian, R. & Lampert, K.P. Genetic variation in the massive coral Porites lobata . Mar Biol 163, 242 (2016). https://doi.org/10.1007/s00227-016-3022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-3022-8

Keywords

Navigation