Skip to main content
Log in

Spatiotemporal variation and sediment retention effects on nematode communities associated with Halimeda opuntia (Linnaeus) Lamouroux (1816) and Sargassum polyceratium Montagne (1837) seaweeds in a tropical phytal ecosystem

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Nematodes play an important role in ecological processes and are one of the most abundant meiofaunal organisms associated with seaweeds. Yet, knowledge on seaweed bed ecosystems is limited. Nematodes associated with Sargassum polyceratium and Halimeda opuntia were compared in two transects, 80 m apart and parallel to the beach line in Cupe Beach, Brazil. The temporal variation during the dry and rainy seasons and the effect of sediment retention by the seaweed on nematode density and composition were investigated. The differences in nematode communities between the two seasons were mainly caused by the increase in density of the most abundant genera in the rainy season. A significant difference was observed between the nematode communities of the two transects for H. opuntia. The nematode communities of both seaweed species did not differ significantly in the same transect. The genus Euchromadora was dominant in both seaweed species. The amount of sediment retained by the seaweeds did not affect the overall nematode density. However, it was positively correlated with the density of Draconema and Euchromadora in both seaweeds, and both genera were exclusively found associated with seaweeds. This result opposes the idea that the more sediment retained by the seaweed, the higher the nematode overall density and the higher the number of nematodes originally coming from the sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abebe E, Traunspurger W, Andrássy I (2007) Freshwater nematodes: ecology and taxonomy, 1st edn. Cabi Publishing, Oxfordshire

    Google Scholar 

  • Alves AS, Caetano A, Costa JL, Costa MJ, Marques JC (2015) Estuarine intertidal meiofauna and nematode communities as indicator of ecosystem’s recovery following mitigation measures. Ecol Indic 54:184–196. doi:10.1016/j.ecolind.2015.02.013

    Article  Google Scholar 

  • Armenteros M, Ruiz-Abierno A, Sosa Y, Pérez-García JA (2012) Habitat heterogeneity effects on macro- and meiofauna (especially nematodes) in Punta Francés coral reef (SW Cuban Archipelago). Rev Invest Mar 32(1):50–61

    Google Scholar 

  • Arroyo NL, Maldonado M, Pérez-Portela R, Benito J (2004) Distribution patterns of meiofauna associated with a sublittoral Laminaria bed in the Cantabrian Sea (north-eastern Atlantic). Mar Biol 144:231–242. doi:10.1007/s00227-003-1191-8

    Article  Google Scholar 

  • Arroyo NL, Aarnio K, Bonsdorff E (2006) Drifting algae as a means of re-colonizing defaunated sediments in the Baltic Sea. A short-term microcosm study. Hydrobiologia 554:83–95. doi:10.1007/s10750-005-1008-5

    Article  Google Scholar 

  • Baer J, Stengel DB (2010) Variability in growth, development and reproduction of the non-native seaweed Sargassum muticum (Phaeophyceae) on the Irish west coast. Estuar Coast Shelf S 90:185–194. doi:10.1016/j.ecss.2010.08.011

    Article  Google Scholar 

  • Bell SS, Walters K, Kern JC (1984) Meiofauna from seagrass habitats: a review and prospectus for future research. Estuaries 7(4):331–338. doi:10.2307/1351617

    Article  Google Scholar 

  • Brewer DT, Blaber SJM, Salini JP, Farmer MJ (1994) Feeding ecology of predatory fishes from Groote Eylandt in the Gulf of Carpentaria, Australia, with special reference to predation on Penaid prawns. Estuar Coast Shelf S40:577–600. doi:10.1006/ecss.1995.0039

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Coull BC, Vernberg WB (1975) Reproductive periodicity of meiobenthic copepods: seasonal or continuous? Mar Biol 32(3):289–293

    Article  Google Scholar 

  • Da Rocha CMC, Venekey V, Bezerra TNC, Souza JRB (2006) Phytal marine nematode assemblages and their relation with the macrophytes structural complexity in a Brazilian tropical rocky beach. Hydrobiologia 553:219–230. doi:10.1007/s10750-005-0923-9

    Article  Google Scholar 

  • De Grisse AT (1969) Redescription ou modification de quelques techniques utilisés dans l’ étude des nématodes phytoparasitaires. Meded. Rijksfakulteit Landbouwwetenschappen Gent 34:251–369

    Google Scholar 

  • De Oliveira DAS, Dos Santos GAP, Derycke S, Moens T, Decraemer W (2014) Biodiversity and connectivity of marine nematodes associated with algae from two tropical beaches. J Nematol 46(2):152

    Google Scholar 

  • De Troch M, Gurdebeke S, Fiers F, Vincx M (2001) Zonation and structuring factors of meiofauna communities in a tropical seagrass bed (Gazi Bay, Kenya). J Sea Res 45:45–61. doi:10.1016/S1385-1101(00)00055-1

    Article  Google Scholar 

  • Derycke S, Vynckt RV, Vanaverbeke J, Vincx M, Moens T (2007) Colonization patterns of Nematoda on decomposing algae in the estuarine environment: community assembly and genetic structure of the dominant species Pellioditis marina. Limnol Oceanogr 52(3):992–1001. doi:10.4319/lo.2007.52.3.0992

    Article  Google Scholar 

  • Dominguez JML, Bittencourt ACSP, Martin L (1992) Controls on quaternary coastal evolution of the east-northeastern coast Brazil: roles off sea-level history, trade winds and climate. Sediment Geo l80:213–232

    Article  Google Scholar 

  • Ferreira Júnior AV (2005) Mapeamento da Zona Costeira Protegida por Arenitos de Praia (Beachrocks) em Anísia Floresta—RN. Master thesis, Federal University of Rio Grande do norte

  • Ferreira CEL, Gonçalves JEA, Coutinho R (2000) Communities structure of fishes and habitat complexity on a tropical rocky shore. Environ Biol Fish 61:353–369

    Article  Google Scholar 

  • Fonsêca MS, Calahan JA (1992) A preliminary evaluation of wave attenuation by four species of seagrass. Estuar Coast Shelf S35:565–576. doi:10.1016/S0272-7714(05)80039-3

    Article  Google Scholar 

  • Frame K, Hunt G, Roy K (2007) Intertidal meiofaunal biodiversity with respect to different algal habitats: a test using phytal ostracodes from Southern California. Hydrobiologia 586(1):331–342. doi:10.1007/s10750-007-0707-5

    Article  Google Scholar 

  • Gee JM, Warwick RM (1994a) Body-size distribution in a marine metazoan community and fractal dimensions of macroalgae. J Exp Mar Biol Ecol 178:247–259. doi:10.1016/0022-0981(94)90039-6

    Article  Google Scholar 

  • Gee JM, Warwick RM (1994b) Metazoan community structure in relation to the fractal dimensions of marine macroalgae. Mar Ecol-Prog Ser 103:141–150. doi:10.1016/0022-0981(94)90039-6

    Article  Google Scholar 

  • Ghobrial MG, Okbah MA, Gharib SM, Soliman AM (2007) Influence of barley straw and submerged macrophytes on fishpond wastewater quality. Egypt J Aquat Res 33(3):68–87

    Google Scholar 

  • Gibbons MJ (1988) The impact of wave exposure on the meiofauna of Gelidium pristoides (Turner) Kuetzing (Gelidiales: Rhodophyta). Estuar Coast Shelf Sci 21:581–593. doi:10.1016/0272-7714(88)90070-4

    Article  Google Scholar 

  • Gibbons MJ (1991) Rocky shore meiofauna: a brief overview. Trans R Soc S Afr 47:595–603

    Google Scholar 

  • Hagerman L (1966) The macro and microfauna associated with Fucus serratus L., with some ecological remarks. Ophelia 3:1–43. doi:10.1080/00785326.1966.10409631

    Article  Google Scholar 

  • Hicks GRF (1980) Structure of phytal harpacticoid copepod assemblages and the influence of habitat complexity and turbidity. J Exp Mar Biol Ecol 44:157–192. doi:10.1016/0022-0981(80)90151-3

    Article  Google Scholar 

  • Hopper BE, Meyers SP (1967a) Populations studies on benthic nematodes within a subtropical seagrass community. Mar Biol 11(2):85–96. doi:10.1007/BF00386510

    Article  Google Scholar 

  • Hopper BE, Meyers SP (1967b) Foliicolous marine nematodes on turtle grass, Thalassia testudinum König, in Biscayne Bay, Florida. Bull Mar Sci Gulf Caribb 17:471–517

    Google Scholar 

  • Jarvis SC, Seed R (1996) The meiofauna of Ascophyllum nodosum (L.) Le Jolis: characterization of the assemblages associated with two common epiphytes. J Exp Mar Biol Ecol 199:249–267. doi:10.1016/0022-0981(95)00184-0

    Article  Google Scholar 

  • Jaya P, Vijaya Bhanu Ch, Naveen Babu M, Annapurna C (2012) Phytal nematodes associated with Caulerpa fastigiata and Caulerpa taxifolia of Visakhapatnam coast. Int J Biol Pharm Allied Sci 1(3):331–336

    Google Scholar 

  • Kenyon RA, Haywood MDE, Heals DS, Loneragan NR, Pendrey RC, Vance DJ (1998) Abundance of fish and crustacean post larvae on portable artificial seagrass units: daily sampling provides quantitative estimates of the settlement of new recruits. J Exp Mar Biol Ecol 232:197–216. doi:10.1016/S0022-0981(98)00107-5

    Article  Google Scholar 

  • Kito K (1982) Phytal marine nematode assemblage on Sargassum confusum Agardh, with Reference to the structure and seasonal fluctuations. J Fac Sci Hokkaido Univ Ser VI Zool 23(1):143–161

    Google Scholar 

  • Machado RCA (2015) Estrutura da comunidade fitoplanctônica e hidrologia do ecossistema recifal de porto de galinhas (Pernambuco-Brasil). Ph.D. thesis, Universidade Federal de Pernambuco, Recife, Brazil

  • Montouchet PC (1979) Sur la communauté des animaux vagiles associés a Sargassum cymosum C. Agardh a Ubatuba, État de São Paulo, Brésil. Stud Neotrop Fauna Environ 14:33–64. doi:10.1080/01650527909360546

    Article  Google Scholar 

  • Moore PG (1971) The nematode fauna associated with holdfasts of kelp Laminaria hyperborea in North-East Britain. J Mar Biol 51:589–604. doi:10.1017/S0025315400014983

    Article  Google Scholar 

  • Muralikrishnamurty PV (1983) Intertidal phytal fauna of Gangavaram, east coast of India. Indian J Mar Sci 12(2):85–89

    Google Scholar 

  • NagelkerkenI Van Der, Velde G, Gorissen MW, Meijer GJ, Van’t Hof T, Den Hartog C (2000) Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar Coast Shelf Sci 51:31–44. doi:10.1006/ecss.2000.0617

    Article  Google Scholar 

  • Novak R (1982) Spatial and seasonal distribution of the meiofauna in the seagrass Posidonia oceanica. Neth J Sea Res 16:380–388. doi:10.1016/0077-7579(82)90044-8

    Article  Google Scholar 

  • Ólafsson E, Johnstone RW, Ndaro SGM (1995) Effects of intensive seaweed farming on the meiobenthos in a tropical lagoon. J Exp Mar Biol Ecol 191:101–117. doi:10.1016/0022-0981(95)00055-V

    Article  Google Scholar 

  • Ott J (1967) Vertikalverteilung von Nematoden in Beständen nordadriatischer Sargassaceen. Helgoland Wiss Meer 15:412–428. doi:10.1007/BF01618638

    Article  Google Scholar 

  • Pape E, Oevelen D, Moodley L, Soetaert K, Vanreusel A (2013) Nematode feeding strategies and the fate of dissolved organic matter carbon indifferent deep-sea sedimentary environments. Deep-Sea Res Pt I 80:94–110. doi:10.1016/j.dsr.2013.05.018

    Article  CAS  Google Scholar 

  • Platt HM, Warwick RM (1983) Free-living marine nematodes. Part. I. British Enoplids. Cambridge University Press, Cambridge

    Google Scholar 

  • Raes M, Vanreusel A (2006) Microhabitat type determines the composition of nematode communities associated with sediment-clogged cold-water coral framework in the Porcupine Seabight (NE Atlantic). Deep-Sea Res Pt I 53:1880–1894. doi:10.1016/j.dsr.2006.08.012

    Article  Google Scholar 

  • Raes M, Decraemer W, Vanreusel A (2008) Walking with worms: coral-associated epifaunal nematodes. J Biogeogr 35:2207–2222. doi:10.1111/j.1365-2699.2008.01945.x

    Article  Google Scholar 

  • Rieras P, Hubas C (2003) Trophic ecology of nematodes from various microhabitats of the Roscoff Aber Bay (France): importance of stranded macroalgae evidenced through δ13C and δ15N. Mar Ecol-Prog Ser 260:151–159. doi:10.3354/meps260151

    Article  Google Scholar 

  • Russo AR (1990) The role of seaweed complexity in structuring Hawaiian epiphytal amphipod communities. Hydrobiologia 194(1):1–12. doi:10.1007/BF00012107

    Article  Google Scholar 

  • Rysgaard S, Christensen PB, Sorensen MV, Funch P, Berg P (2000) Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland. Aquat Microb Ecol 21:59–71

    Article  Google Scholar 

  • Schanz A, Polte P, Asmus H (2002) Cascading effects of hydrodynamics on an epiphyte–grazer system in intertidal seagrass beds of the Wadden Sea. Mar Biol 141:287–297. doi:10.1007/s00227-002-0823-8

    Article  Google Scholar 

  • Schmid-Araya JM, Hildrew AG, Robertson A, Schmid PE, Winterbottom J (2002) The importance of meiofauna in food web: evidence from an acid stream. Ecology 83(5):1271–1285. doi:10.1890/0012-9658(2002)083[1271:TIOMIF]2.0.CO;2

    Article  Google Scholar 

  • Soetaert K, Heip C (1995) Nematode assemblages of deep-sea and shelf break sites in the North Atlantic and Mediterranean Sea. Mar Ecol-Prog Ser 125:171–183. doi:10.3354/meps125171

    Article  Google Scholar 

  • Song SJ, Ryu J, Khim JS, Kim W, Yun SG (2010) Seasonal variability of community structure and breeding activity in marine phytal harpacticoid copepods on Ulva pertusa from Pohang, east coast of Korea. J Sea Res 63:1–10. doi:10.1016/j.seares.2009.08.004

    Article  Google Scholar 

  • StatSoft, Inc. (2004) STATISTICA (data analysis software system), version 7. http://www.statsoft.com

  • Taylor WMR (1967) Species of Caulerpa (Chlorophyceae) collected on the International Indian Ocean Expedition. Blumea 15:45–53

    Google Scholar 

  • Taylor RB (1997) Seasonal variation in assemblages of mobile epifauna inhabiting three subtidal brown seaweeds in northeastern New Zealand. Hydrobiologia 361:25–35. doi:10.1023/A:1003182523274

    Article  Google Scholar 

  • Tientjen JH, Lee JJ (1973) Life history and feeding types of the marine nematode Chromadora macrolaimoides Steiner. Oecologia 12:303–314

    Article  Google Scholar 

  • Toyohara T, Nakaoka M, Aioi K (1999) Population dynamics and reproductive traits of phytal gastropods in seagrass bed in Otsuchi Bay, north-eastern Japan. Mar Ecol 19(2–3):162–178. doi:10.1046/j.1439-0485.1999.2034082.x

    Google Scholar 

  • Travizi A, Zavodnik N, Zavodnik N (2004) Phenology of Caulerpa taxifolia and temporal dynamics of its epibiontic meiofauna in the port of Malinska (Croatia, northern Adriatic Sea). Sci Mar 68:145–154

    Article  Google Scholar 

  • Ullberg J, Ólafsson E (2003) Free-living marine nematodes actively choose habitat when descending from the water column. Mar Ecol Prog Ser 260:141–149. doi:10.3354/meps260141

    Article  Google Scholar 

  • Van Donk E (1998) Switches between clear and turbid water states in a biomanipulated lake (1986–1996): the role of herbivory on macrophytes. In: Jeppesen E, Søndergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp 290–297

    Chapter  Google Scholar 

  • Venekey V, Fonsêca-Genevois VG, Da Rocha CMC, Santos PJP (2008) Distribuição espaço-temporal da meiofauna em Sargassum polyceratium Montagne (Fucales, Sargassaceae) de um costão rochoso do nordeste do Brasil. Atlântica 30(1):53–67. doi:10.5088/atlântica.v30i1.823

    Google Scholar 

  • Vidotti EC, Rollemberg MCE (2004) Algas: da economia nos ambientes aquáticos à biorremediação e à química analítica. Quím Nova 27(1):139–145. doi:10.1590/S0100-40422004000100024

    Article  CAS  Google Scholar 

  • Warwick RM (1977) The structure and seasonal fluctuation of phytal marine nematode association on the Isles of Scilly. In: Keegan BF, Ceidigh PO, Boaden PJS (eds) Biology of benthic organisms. Pergamon Press, Oxford, pp 577–585

    Chapter  Google Scholar 

  • Warwick RM, Platt HM, Somerfield, PJ (1998) Free-living Marine Nematodes Part III Monhysterids. Synopses of the British fauna (New Series), 53. Field Studies Council: Shrewsbury. ISBN 1-85153-260-9. VII

  • Wetzel MA, Weber A, Giere O (2002) Re-colonization of anoxic/sulfidic sediments by marine nematodes alter experimental removal of macroalgal cover. Mar Biol 141:679–689. doi:10.1007/s00227-002-0863-0

    Article  CAS  Google Scholar 

  • Wieser W (1951) Untersuchungen über die algaenbewohnende Mikrofauna mariner Hartböden. I. Zur Oekologie und Systematik der Nematodenfauna von Plymouth. Ost Zool Z 3:425–480

    Google Scholar 

  • Wieser W (1952) Investigations on the microfauna inhabiting seaweeds on rocky coasts. IV. Studies on the vertical distribution of the fauna inhabiting seaweeds below the Plymouth Laboratory. J Mar Biol Assoc UK 31:145–174. doi:10.1017/S002531540000374X

    Article  Google Scholar 

  • Wieser W (1953) Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv für Zoologie 4:439–484

    Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. Carl Vangestel for the statistical advice, Prof. Dr. Verônica da Fonsêca-Genevois (in memorian) for the incentive and for sharing her experience, The Federal Rural University of Pernambuco (UFRPE) for the logistic support and the Flemish Interuniversity Council—University Development Cooperation (VLIR-UOS) for the grant and financing of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. S. De Oliveira.

Additional information

Responsible Editor: F. Weinberger.

Reviewed by Undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Oliveira, D.A.S., Derycke, S., Da Rocha, C.M.C. et al. Spatiotemporal variation and sediment retention effects on nematode communities associated with Halimeda opuntia (Linnaeus) Lamouroux (1816) and Sargassum polyceratium Montagne (1837) seaweeds in a tropical phytal ecosystem. Mar Biol 163, 102 (2016). https://doi.org/10.1007/s00227-016-2882-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2882-2

Keywords

Navigation