Skip to main content
Log in

Ontogenetic shift of spectral sensitivity in the larval phototaxis of two sympatric caridean shrimp, Lysmata wurdemanni and L. boggessi (Decapoda: Lysmatidae)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Phototactic behaviors have not been previously examined in the caridean shrimp family Lysmatidae. Informal observations suggest that their larvae exhibit a pronounced and unusual phototaxis. We subjected larvae of two sympatric species (Lysmata wurdemanni and L. boggessi) to a range of light spectra and intensities to examine their phototactic responses. Early- (zoea 1), middle- (zoea 6), and late-stage (zoea 12) larvae were examined under conditions of either light adaptation or dark adaptation. Each unique experiment (e.g., dark-adapted zoea 1 larvae of L. wurdemanni) had five replicate runs per treatment (e.g., n = 5 for each spectrum or intensity), with ten larvae per run. Larvae were less sensitive to light than some other decapod crustaceans, typically requiring a light intensity of 1014 photons m−2 s−1 to elicit a response. Both species displayed similar peak spectral preference shifts from 480 to 520 nm as they progressed from early to late zoeal stages. Spectral preference shifts during ontogeny are previously unknown in crustaceans and, to our knowledge, other marine taxa. The phototaxis of these larvae is also interesting in light of the reevaluation of the taxonomic status of western Atlantic Lysmata. These newly recognized separate species have distinct but overlapping ranges and habitats, and an adaptive interpretation of their respective phototactic behaviors may provide insight into their unique habitats and life histories. The apparent spectral shift observed in both species is likely a reflection of a migration from bluer (offshore or deeper) water early in larval development to shallower coastal waters as metamorphosis approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiken RB, Hailman JP (1978) Positive phototaxis in the brine shrimp Artemia salina to monochromatic light. Can J Zool 56:708–711

    Article  Google Scholar 

  • Apel JR (1987) Principles of ocean physics. Academic Press, San Diego, p 625

    Google Scholar 

  • Baeza JA (2009) Protandric simultaneous hermaphroditism is a conserved trait in Lysmata (Caridea: Lysmatidae): implications for the evolution of hermaphroditism in the genus. Smithson Contrib Mar Sci 38:95–110

    Google Scholar 

  • Baeza JA, Schubart CD, Zillner P, Fuentes S, Bauer RT (2009) Molecular phylogeny of shrimps from the genus Lysmata (Caridea: Hippolytidae): the evolutionary origins of protandric simultaneous hermaphroditism and social monogamy. Biol J Linn Soc 96(2):415–424. doi:10.1111/j.1095-8312.2008.01133.x

    Article  Google Scholar 

  • Baldwin AP, Bauer RT (2003) Growth, survivorship, life-span, and sex change in the hermaphroditic shrimp Lysmata wurdemanni (Decapoda: Caridea: Hippolytidae). Mar Biol 143(1):157–166. doi:10.1007/s00227-003-1043-6

    Article  Google Scholar 

  • Bartilotti C, Calado R, Rhyne A, Dos Santos A (2012) Shedding light on the larval genus Eretmocaris: morphological larval features of two closely related trans-isthmian Lysmata species (Decapoda: Caridea: Hippolytidae) described on the basis of laboratory cultured material. Helgol Mar Res 66(1):97–115. doi:10.1007/s10152-011-0251-6

    Article  Google Scholar 

  • Bassim KM, Sammarco PW (2003) Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar Biol 142(2):241–252. doi:10.1007/s00227-002-0953-z

    CAS  Google Scholar 

  • Bauer RT (2000) Simultaneous hermaphroditism in caridean shrimps: a unique and puzzling sexual system in the Decapoda. J Crustacean Biol 20(2):116–128

    Google Scholar 

  • Bauer RT, Holt GJ (1998) Simultaneous hermaphroditism in the marine shrimp Lysmata wurdemanni (Caridea: Hippolytidae): an undescribed sexual system in the decapod Crustacea. Mar Biol 132(2):223–235. doi:10.1007/s002270050388

    Article  Google Scholar 

  • Brooke S, Young CM (2005) Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Mar Biol 146(4):665–675. doi:10.1007/s00227-004-1481-9

    Article  Google Scholar 

  • Calado R, Narciso L, Morais S, Rhyne AL, Lin J (2003) A rearing system for the culture of ornamental decapod larvae. Aquaculture 218:329–339. doi:10.1016/S0044-8486(02)00583-5

    Article  Google Scholar 

  • Calado R, Bartilotti C, Narciso L, Dos Santos A (2004) Redescription of the larval stages of Lysmata seticaudata (Risso, 1816) (Crustacea, Decapoda, Hippolytidae) reared under laboratory conditions. J Plankton Res 26(7):737–752. doi:10.1093/plankt/fbh072

    Article  Google Scholar 

  • Chace F Jr (1970) A new shrimp of the genus Lysmata (Decapoda, Hippolytidae) from the Western Atlantic. Crustaceana 19(1):59–66

    Article  Google Scholar 

  • Chace F Jr (1972) The shrimps of the Smithsonian-Bredin Caribbean Expeditions with a summary of the West Indian shallow-water species (Crustacea: Decapoda: Natantia). Smithson Contrib Zool 98(1):1–179

    Google Scholar 

  • Cohen JH, Forward RB Jr (2002) Spectral sensitivity of vertically migrating marine copepods. Biol Bull 203:307–314

    Article  Google Scholar 

  • De Grave SS, Li CP, Tsang LM, Chu KH, Chan TY (2014) Unweaving hippolytoid systematics (Crustacea, Decapoda, Hippolytidae): resurrection of several families. Zool Scr 43(5):496–507. doi:10.1111/zsc.12067

    Article  Google Scholar 

  • Dingle H (1969) Ontogenetic changes in phototaxis and thigmokinesis in stomatopod larvae. Crustaceana 16(108):110

    Google Scholar 

  • Fiedler GC (1998) Functional, simultaneous hermaphroditism in female-phase Lysmata amboinensis (Decapoda: Caridea: Hippolytidae). Pac Sci 52(2):161–169

    Google Scholar 

  • Fiedler GC, Rhyne AL, Segawa R, Aotsuka T, Schizas NV (2010) The evolution of euhermaphroditism in caridean shrimps: a molecular perspective of sexual systems and systematics. BMC Evol Biol 10:297. doi:10.1186/1471-2148-10-297

    Article  Google Scholar 

  • Forward RB Jr (1974) Negative phototaxis in crustacean larvae: possible functional significance. J Exp Mar Biol Ecol 16:11–17

    Article  Google Scholar 

  • Forward RB Jr (1976a) Light and diurnal vertical migration: photobehavior and photophysiology of plankton. Photobiol Rev 1:157–209

    Google Scholar 

  • Forward RB Jr (1976b) A shadow response in a larval crustacean. Biol Bull 115:126–140

    Article  Google Scholar 

  • Forward RB Jr (1977) Occurrence of a shadow response among brachyuran larvae. Mar Biol 39:331–341

    Article  Google Scholar 

  • Forward RB Jr (1987) Comparative study of crustacean larval photoresponses. Mar Biol 94:589–595

    Article  Google Scholar 

  • Forward RB Jr, Costlow JD Jr (1974) The ontogeny of phototaxis by larvae of the crab Rhithropanopeus harrisii. Mar Biol 26:27–33

    Article  Google Scholar 

  • Forward RB Jr, Cronin TW (1979) Spectral sensitivity of larvae from intertidal crustaceans. J Comp Physiol 133:311–315

    Article  Google Scholar 

  • Forward RB Jr, Cronin TW (1980) Tidal rhythms of activity and phototaxis of an estuarine crab larva. Biol Bull 158(3):295–303

    Article  Google Scholar 

  • Forward RB Jr, Rittschof D (1994) Photoresponses of crab megalopae in offshore and estuarine waters: implications for transport. J Exp Mar Biol Ecol 182:183–192

    Article  Google Scholar 

  • Forward RB Jr, Tankersley R (2001) Selective tidal-stream transport of marine animals. Oceanogr Mar Biol 39:305–353

    Google Scholar 

  • Gal G, Loew ER, Rudstam LG, Mohammadian AM (1999) Light and diel vertical migration: Spectral sensitivity and light avoidance by Mysis relicta. Can J Fish Aquat Sci 56(2):311–322

    Article  Google Scholar 

  • Gibbes LR (1850) On the carcinological collections of the cabinets of natural history in the United States: with an enumeration of species contained therein and description of new species. Proc AAAS 3:167–201

    Google Scholar 

  • Gore RH (1985) Molting and growth in decapod larvae. Crustacean Issues 2:1–65

    Google Scholar 

  • Gurney R (1937) Larvae of decapod crustacea. Part IV. Hippolytidae. Discov Rep 14:351–404

    Google Scholar 

  • Herrnkind WF (1968) The breeding of Uca pugilator and mass rearing of the larva with comments on the behavior of the larvae and early crab stages. Crustaceana (suppl) 2:214–224

    Google Scholar 

  • Jaeger RG, Hailman JP (1976) Ontogenetic shift of spectral phototactic preferences in anuran tadpoles. J Comp Physiol Psychol l90(10):930–945

    Article  Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam, p 231

    Google Scholar 

  • Johnson KB, Forward RB Jr (2003) Larval photoresponses of the polyclad flatworm Maritigrella crozieri (Platyhelminthes, Polycladida) (Hyman). J Exp Mar Biol Ecol 282(1–2):103–112. doi:10.1016/S0022-0981(02)00448-3

    Article  Google Scholar 

  • Lin J, Zhang D (2001) Reproduction in a simultaneous hermaphroditic shrimp, Lysmata wurdemanni: any two will do? Mar Biol 139(6):1155–1158. doi:10.1007/s002270100679

    Article  Google Scholar 

  • Lindstroem M, Nilsson HL (1988) Eye function of Mysis relicta Loven (Crustacea) from two photic environments: Spectral sensitivity and light tolerance. J Exp Mar Biol Ecol 120(1):23–37

    Article  Google Scholar 

  • Lopez-Duarte PC, Tankersley RA (2007) Circatidal swimming behavior of brachyuran crab zoea larvae: implications for ebb-tide transport. Mar Biol 151(6):2037–2051. doi:10.1007/s00227-007-0614-3

    Article  Google Scholar 

  • Losey GS, Cronin TW, Goldsmith TH, Hyde D, Marshall NJ, Mcfarland WN (1999) The UV visual world of fishes: a review. J Fish Biol 54:921–943

    Article  Google Scholar 

  • Marsden JR (1984) Swimming in response to light by larvae of the tropical serpulid Spirobranchus giganteus. Mar Biol 83(1):13–16

    Article  Google Scholar 

  • Manor S, Polak O, Saidel WM, Goulet TL, Shashar N (2009) Light intensity mediated polarotaxis in Pontella karachiensis (Pontellidae, Copepoda). Vis Res 49(19):2371–2378

    Article  Google Scholar 

  • McCarthy DA, Forward RB Jr, Young CM (2002) Ontogeny of phototaxis and geotaxis during larval development of the sabellariid polychaete Phragmatopoma lapidosa. Mar Ecol Prog Ser 241:215–220

    Article  Google Scholar 

  • Munz FW (1958) The photosensitive retinal pigments of fishes from relatively turbid coastal waters. J Gen Physiol 42:445–459

    Article  CAS  Google Scholar 

  • Palmtag M, Holt GJ (2001) Captive rearing of fire shrimp (Lysmata debelius). Texas Sea Grant College Program Research Report, p 4

  • Queiroga H, Blanton J (2004) Interactions between behaviour and physical forcing in the control of horizontal transport of decapod larvae. Adv Mar Biol 47:107–214. doi:10.1016/S0065-2881(04)47002-3

    Article  Google Scholar 

  • Rhyne AL, Lin J (2004) Effects of different diets on larval development in a peppermint shrimp (Lysmata sp. (Risso)). Aquacult Res 35(12):1179–1185. doi:10.1111/j.1365-2109.2004.01143.x

    Article  Google Scholar 

  • Rhyne AL (2002) Improvements in marine ornamental culture. Master Thesis, Florida Institute of Technology, Melbourne, FL

  • Rhyne AL, Lin J (2006) A western Atlantic peppermint shrimp complex: redescription of Lysmata wurdemanni, description of four new species, and remarks on Lysmata rathbunae (Crustacea: Decapoda: Hippolytidae). Bull Mar Sci 79(1):165–204

    Google Scholar 

  • Rozenberg GV (1966) Twilight, a Study in Atmospheric Optics. Authorized translation from the Russian by R.B. Rodman. New York, Plenum Press, 1966

  • Scheltema RS (1989) Planktonic and non-planktonic development among prosobranch gastropods and its relationship to the geographic range of species. In: Ryland IS, Tyler PA (eds) Reproduction, genetics and distribution of marine organisms. Olsen and Olsen Publishers, Fredensborg, pp 183–188

    Google Scholar 

  • Stearns DE, Forward RB Jr (1984) Photosensitivity of the calanoid copepod Acartia tonsa. Mar Biol 82(1):85–89

    Article  Google Scholar 

  • Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans, their physics, chemistry, and general biology. Prentice-Hall, New York, p 1061

    Google Scholar 

  • Thorson G (1964) Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates. Ophelia 1:167–208

    Article  Google Scholar 

  • Verheijen FJ (1958) The mechanism of the trapping effect of artificial light sources upon animals. Arch Neerl Zool 13:1–107

    Article  Google Scholar 

  • Wilson JEH, Forward RB Jr, Costlow JD (1999) Effects of diflubenzuron on the ontogeny of phototaxis by Palaemonetes pugio. Gulf Res Rep 11:7–14

    Google Scholar 

  • Zhang D, Lin J, Creswell RL (1998) Ingestion rate and feeding behavior of the peppermint shrimp Lysmata wurdemanni on Artemia nauplii. J World Aquacult Soc 29(1):97–103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project enjoyed the support of the Smithsonian Marine Station at Fort Pierce and the Edwin Link Fellowship Program. Thanks to Dr. Junda Lin for laboratory space and sage advice and to Leslie Grabowski and Libby Rhyne for their help in the dark room. Appreciation is also expressed to Colleen Johnson, a.k.a. the larval widow, for her patience and support. Thanks to two anonymous reviewers for their careful consideration of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin B. Johnson.

Additional information

Communicated by X. Irigoyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, K.B., Rhyne, A.L. Ontogenetic shift of spectral sensitivity in the larval phototaxis of two sympatric caridean shrimp, Lysmata wurdemanni and L. boggessi (Decapoda: Lysmatidae). Mar Biol 162, 1265–1273 (2015). https://doi.org/10.1007/s00227-015-2667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2667-z

Keywords

Navigation