Skip to main content

Advertisement

Log in

Trophic relationships of hydrothermal vent and non-vent communities in the upper sublittoral and upper bathyal zones off Kueishan Island, Taiwan: a combined morphological, gut content analysis and stable isotope approach

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study used morphological, gut content analysis and carbon- and nitrogen-stable isotope analysis to investigate the trophic structure of upper sublittoral (15–30 m deep) and upper bathyal (200–300 m deep) hydrothermal vents and the adjacent non-vent upper bathyal environment off Kueishan Island. The sublittoral vents host no chemosynthetic fauna, but green and red algae, epibiotic biofilm on crustacean surfaces, and zooplankton form the base of the trophic system. Suspension-feeding sea anemones and the generalist omnivorous vent crab Xenograpsus testudinatus occupy higher trophic levels. The upper bathyal hydrothermal vent is a chemoautotrophic-based system. The vent mussel Bathymodiolus taiwanensis forms a chemosynthetic component of this trophic system. Bacterial biofilm, surface plankton, and algae form the other dietary fractions of the upper bathyal fauna. The vent hermit crab Paragiopagurus ventilatus and the vent crab X. testudinatus are generalist omnivores. The vent-endemic tonguefish Symphurus multimaculatus occupies the top level of the trophic system. The adjacent non-vent upper bathyal region contains decapod crustaceans, which function as either predators or scavengers. The assemblages of X. testudinatus from sublittoral and upper bathyal vents exhibited distinct stable isotope values, suggesting that they feed on different food sources. The upper bathyal Xenograpsus assemblages displayed large variations in their stable isotope values and exhibited an ontogenetic shift in their δ13C and δ15N stable isotope signatures. Some individuals of Xenograpsus exhibited δ15N values close to those of non-vent species, suggesting that the highly mobile Xenograpsus may transfer energy between the upper bathyal hydrothermal vents and the adjacent non-vent upper bathyal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abed-Navandi D, Dworschak PC (2005) Food sources of tropical thalassinidean shrimps: a stable-isotope study. Mar Ecol Prog Ser 291:159–168. doi:10.3354/meps291159

    Article  CAS  Google Scholar 

  • Barry JP, Buck KR, Kochevar RK, Nelson DC, Fujiwara Y, Goffredi SK, Hashimoto J (2002) Methane-based symbiosis in a mussel, Bathymodiolus platifrons, from cold seeps in Sagami Bay, Japan. Invertebr Biol 121:47–54. doi:10.1111/j.1744-7410.2002.tb00128.x

    Article  Google Scholar 

  • Bergquist DC, Eckner JT, Urcuyo IA, Cordes EE, Hourdez S, Macko SA, Fisher CR (2007) Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Mar Ecol Prog Ser 330:49–65. doi:10.3354/meps330049

    Article  Google Scholar 

  • Bouchet P, Cosel VR (2004) The world’s largest Lucinid is an undescribed species from Taiwan (Mollusca: Bivalvia). Zool Stud 43:704–711

    Google Scholar 

  • Bouillon S, Mohan PC, Sreenivas N, Dehairs F (2000) Sources of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. Mar Ecol Prog Ser 208:79–92

    Article  Google Scholar 

  • Campbell BJ, Cary SC (2004) Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Appl Environ Microbiol 70:6282–6289

    Article  CAS  Google Scholar 

  • Carvalho MC, Eyre BD (2011) Carbon stable isotope discrimination during respiration in three seaweed species. Mar Ecol Prog Ser 437:41–49. doi:10.3354/meps09300

    Article  CAS  Google Scholar 

  • Carvalho MC, Hayashizaki K-I, Ogawa H (2009) Short-term measurement of carbon stable isotope discrimination in photosynthesis and respiration by aquatic macrophytes, with marine macroalgal examples. J Phycol 45:761–770. doi:10.1111/j.1529-8817.2009.00685.x

    Article  Google Scholar 

  • Cavanaugh CM, Wirsen CO, Jannasch HW (1992) Evidence of methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge. Appl Environ Microbiol 58:3799–3803

    CAS  Google Scholar 

  • Chan BKK, Lin IC, Shih TW, Chan TY (2008) Bioluminescent emissions of the deep-water pandalid shrimp, Heterocarpus sibogae De Man, 1917 (Decapoda, Caridea, Pandalidae) under laboratory conditions. Crustaceana 81:341–350. doi:10.1163/156854008783564064

    Article  Google Scholar 

  • Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–441

    Google Scholar 

  • Childress JJ, Fisher CR, Brooks JM et al (1983) A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308. doi:10.1126/science.233.4770.1306

    Article  Google Scholar 

  • Colaço A, Dehairs F, Desbruyères D (2002) Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep Sea Res I 49:395–412. doi:10.1016/S0967-0637(01)00060-7

    Article  Google Scholar 

  • Comeault A, Stevens CJ, Juniper SK (2010) Mixed photosynthetic-chemosynthetic diets in vent obligate macroinvertebrates at shallow hydrothermal vents on Volcano 1, South Tonga Arc-evidence from stable isotope and fatty acid analyses. Cah Biol Mar 51:351–359

    Google Scholar 

  • Cosel VR (2008) A new Bathymodioline mussel (Bivalvia: Mytiloidea: Mytilidae: Bathymodiolinae) from vent sites near Kueishan Island, north east Taiwan. Raffles Bull Zool 19:105–114

    Google Scholar 

  • Cosel VR, Bouchet P (2008) Tropical deep-water lucinids (Mollusca: Bivalvia) from the Indo-Pacific: essentially unknown, but diverse and occasionally gigantic. Trop Deep Sea Benthos 25:115–213

    Google Scholar 

  • Dando PR, Hughes JA, Thiermann F (1995) Preliminary observations on biological communities at shallow hydrothermal vents in the Aegean Sea. In: Parson LM, Walker CL, Dixon DR (eds) Hydrothermal vents and processes. Special Publication 87. Geological Society, London, pp 303–317

  • de Buron I, Morand S (2002) Deep-sea hydrothermal vent parasites: where do we stand? Cah Biol Mar 43:245–246

    Google Scholar 

  • Desbruyères D, Segonzac M, Bright M (2006) Handbook of deep-sea hydrothermal vent fauna. Denisia 18:1–544

    Google Scholar 

  • Duperron S (2010) The diversity of deep-sea mussels and their bacterial symbioses. In: Kiel S (ed) The vent and seep biota. Topics in geobiology 33. Springer Science Business Media B.V., Dordrecht, pp 137–167

  • Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness ZP, DeChaine E, Cavanaugh CM, Dubilier N (2006) Dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol 8:1441–1447. doi:10.1111/j.1462-2920.2006.01038.x

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer R, Hubic KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537. doi:10.1146/annurev.pp.40.060189.002443

    Article  CAS  Google Scholar 

  • Fiala-Médioni A, McKiness ZP, Dando P, Boulegue J, Mariotti A, Alayse-Danet AM, Robinson JJ, Cavanaugh CM (2002) Ultrastructural, biochemical, and immunological characterization of two assemblages of the mytilid mussel Bathymodiolus azoricus from the Mid-Atlantic Ridge: evidence for a dual symbiosis. Mar Biol 141:1035–1043. doi:10.1007/s00227-002-0903-9

    Article  Google Scholar 

  • Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ, Burke RA Jr (1993) The co-occurrence of methanotrophic and chemoautotrophic sulfur oxidizing bacterial symbionts in a deep-sea mussel. Mar Ecol 14:277–289. doi:10.1111/j.1439-0485.1993.tb00001.x

    Article  Google Scholar 

  • Fisher CR, Childress JJ, Macko SA, Brooks JM (1994) Nutritional interactions in Galapagos Rift hydrothermal vent communities: inferences from stable carbon and nitrogen isotope analyses. Mar Ecol Prog Ser 103:45–55

    Article  CAS  Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer Science+Business Media, LLC, New York

    Book  Google Scholar 

  • Gage JD, Tyler PA (1991) Deep-sea biology: a natural history of organisms at the deep sea floor. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gaudron SM, Lefebvre S, Jorge AN, Gaill F, Pradillon F (2012) Spatial and temporal variations in food web structure from newly opened habitat at hydrothermal vents. Mar Environ Res 77:129–140

    Article  CAS  Google Scholar 

  • Gebruk AV, Southward EC, Kennedy H, Southward AJ (2000) Food sources, behaviour, and distribution of hydrothermal vent shrimps at the Mid-Atlantic Ridge. J Mar Biol Assoc UK 80:485–499

    Article  CAS  Google Scholar 

  • Govenar B (2012) Energy transfer through food webs at hydrothermal vents: linking the lithosphere to the biosphere. Oceanography 25:246–255. doi:10.5670/oceanog.2012.23

    Article  Google Scholar 

  • Griffis RB, Suchanek TH (1991) A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda: Thalassinidea). Mar Ecol Prog Ser 79:171–183

    Article  Google Scholar 

  • Hashimoto J, Miura T, Fujikura K, Ossaka J (1993) Discovery of vestimentiferan tube-worms in the euphotic zone. Zool Sci 10:1063–1067

    Google Scholar 

  • House CH, Schopf JW, Stetter KO (2003) Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes. Org Geochem 34:345–356

    Article  CAS  Google Scholar 

  • Hu MYA, Hagen W, Jeng MS, Saborowski E (2012) Metabolic energy demand and food utilization of the hydrothermal vent crab Xenograpsus testudinatus (Crustacea: Brachyura). Aquat Biol 15:11–25. doi:10.3354/ab00396

    Article  Google Scholar 

  • Hudson IR, Wigham BD (2003) In situ observations of predatory feeding behaviour of the galatheid squat lobster Munida sarsi using a remotely operated vehicle. J Mar Biol Ass UK 83:463–464. doi:10.1017/S0025315403007343h

    Article  Google Scholar 

  • Hugler M, Sievert SM (2011) Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Ann Rev Mar Sci Palo Alto Annu Rev 3:261–289

  • Hwang J-S, Lee C-S (2003) The mystery of underwater world for tourism of Turtle Island, Taiwan. Northeastern Coast National Scenic Area Administration, Tourism Bureau, The Ministry of Transportation, and Communication, Taiwan (in Chinese)

  • Jeng MS, Ng NK, Ng PKL (2004) Feeding behaviour: hydrothermal vent crabs feast on sea ‘snow’. Nature 432:969. doi:10.1038/432969a

    Article  CAS  Google Scholar 

  • Karl DM (1995) Ecology of free-living, hydrothermal vent microbial communities. In: Karl DM (ed) The microbiology of deep-sea hydrothermal vents. CRC Press, New York, pp p35–p124

    Google Scholar 

  • Komai T, Chan TY (2010) A new genus and two new species of alvinocaridid shrimps (Crustacea: Decapoda: Caridea) from a hydrothermal vent field off northeastern Taiwan. Zootaxa 2372:15–32

    Google Scholar 

  • Komai T, Fujiwara Y (2012) New records of callianassid ghost shrimp (Crustacea: Decapoda: Axiidea) from reducing environments in Kyushu, southwestern Japan. Zootaxa 3271:55–67

    Google Scholar 

  • Komai T, Kitajima M, Nemoto S, Miyake H (2011) New record of Paragiopagurus ventilatus (Crustacea: Decapoda: Anomura: Parapaguridae) from hydrothermal vents on the Nikko Seamount, Mariana Trough, the first hermit crab using siboglinid tubes for housing. Mar Biodivers Rec 3:e122. doi:10.1017/S1755267210001090

    Article  Google Scholar 

  • Kuo FW (2001) Preliminary investigation of the hydrothermal activities of Kueishantao Island. Dissertation, National Sun Yat-sen University

  • Lavalli KL, Spanier E (2007) The biology and fisheries of the slipper lobster. Crustacean, Issues 17. CRC Press, New York

  • Lee MY, Munroe TA, Chen HM (2009) A new species of tonguefish (Pleuronectiformes: Cynoglossidae) from Taiwanese waters. Zootaxa 2203:49–58

    Google Scholar 

  • Lemaitre R (2004) Discovery of the first hermit crab (Crustacea: Decapoda: Parapaguridae) associated with hydrothermal vents. Cah Biol Mar 45:325–334

    Google Scholar 

  • Levesque C, Limen H, Juniper SK (2005) Origin, composition and nutritional quality of particulate matter at deep-sea hydrothermal vents on Axial Volcano, NE Pacific. Mar Ecol Prog Ser 289:43–52

    Article  Google Scholar 

  • Lichtman GS, Normark WR, Spiess FN (1984) Photogeologic study of a segment of the East Pacific Rise axis near 21°N latitude. Geol Soc Am Bull 95:743–752. doi:10.1130/0016-7606(1984)95<743:PSOASO>2.0.CO;2

    Article  Google Scholar 

  • Lin SY (2011) The study of feeding habits and protein expression pattern of Xenograpsus testudinatus in upper sublittoral hydrothermal vents of Kueishan Island. Dissertation, National Sun Yat-sen University

  • Lin FJ, Komai T, Chan TY (2007) A new species of a callianassid shrimp (Crustacea: Decapoda: Thalassinidea) from deep-water hydrothermal vents off Taiwan. Proc Biol Soc Wash 120(2):143–158. doi:10.2988/0006-324X(2007)120[143:ANSOCS]2.0.CO;2

  • Lin HY, Lin PY, Chang NN, Shiao JC, Kao SJ (2014) Trophic structure of megabenthic food webs along depth gradients in the South China Sea and off northeastern Taiwan. Mar Ecol Prog Ser 501:53–66

    Article  CAS  Google Scholar 

  • Mateo MA, Serrano O, Serrano L, Michener RH (2008) Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia 157:105–115. doi:10.1007/s00442-008-1052-8

    Article  Google Scholar 

  • McKiness ZP, McMullin ER, Fisher CR, Cavanaugh CM (2005) A new bathymodioline mussel symbiosis at the Juan de Fuca hydrothermal vents. Mar Biol 148:109–116. doi:10.1007/s00227-005-0065-7

    Article  Google Scholar 

  • Micheli F, Peterson CH, Mullineaux LS, Fisher CR, Mills SW, Sancho G, Johnson GA, Lenihan HS (2002) Predation structures communities at deep-sea hydrothermal vents. Ecol Monogr 72:365–382. doi:10.1890/0012-9615(2002)072[0365:PSCADS]2.0.CO;2

  • Munroe TA, Tyler J, Tunnicliffe V (2011) Description and biological observations on a new species of deepwater symphurine tonguefish (Pleuronectiformes: Cynoglossidae: Symphurus) collected at Volcano-19, Tonga Arc, West Pacific Ocean. Zootaxa 3061:53–66

    Google Scholar 

  • Nanjo N (2007) Feeding habits of the glass shrimp Pasiphaea japonica in Toyama Bay of the Sea of Japan. Crustacean Res 36:45–51

    Google Scholar 

  • Nelson DC, Hagan KD, Edwards DB (1995) The gill symbiont of the hydrothermal vent mussel Bathymodiolus thermophilus is a psychrophilic, chemoautotrophic, sulfur bacterium. Mar Biol 121:487–495. doi:10.1007/BF00349457

    Article  Google Scholar 

  • Ng NK, Huang JF, Ho PH (2000) Description of a new species of hydrothermal crab, Xenograpsus testudinatus (Crustacea: Decapoda: Brachyura: Grapsidae) from Taiwan. Nat Taiwan Mus Spec Publ Ser 10:191–199

    Google Scholar 

  • Page HM, Fiala-Medioni A, Fisher CR, Childress JJ (1991) Experimental evidence for filter-feeding by the hydrothermal vent mussel, Bathymodiolus thermophiles. Deep Sea Res I 38:1455–1461

    Article  Google Scholar 

  • Pedersen RB, Rapp HT, Thorseth IH, Lilley MD, Barriga FJAS, Baumberger T, Flesland K, Fonseca R, Fruh-Freen GL, Jorgensen SL (2010) Discovery of a black smoker field and a novel vent fauna at the ultraslow spreading Arctic Mid-Ocean Ridges. Nat Comm 1:126

    Article  Google Scholar 

  • Polz MF, Robinson JJ, Cavanaugh CM, Van Dover CL (1998) Trophic ecology of massive shrimp aggregations at a Mid-Atlantic Ridge hydrothermal vent site. Limnol Oceanogr 43:1631–1638

    Article  CAS  Google Scholar 

  • Pond DW, Bell MV, Dixon DR, Fallick AE, Segonzac M, Sargent JR (1998) Stable-carbon-isotope composition of fatty acids in hydrothermal vent mussels containing methanotrophic and thiotrophic bacterial endosymbionts. Appl Environ Microbiol 64:370–375

    CAS  Google Scholar 

  • Rau GH, Hedges JI (1979) Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Nature 203:648–649. doi:10.1126/science.203.4381.648

    CAS  Google Scholar 

  • Reid WDK, Sweeting CJ, Wigham BD, Zwirglmaier K, Hawkes JA et al (2013) Spatial differences in east scotia ridge hydrothermal vent food webs: influences of chemistry, microbiology and predation on trophodynamics. PLoS One 8(6):e65553. doi:10.1371/journal.pone.0065553

    Article  CAS  Google Scholar 

  • Robinson JJ, Scott KM, Swanson ST, O’Leary MH, Horken K, Tabita FR, Cavanaugh CM (2003) Kinetic isotope effect and characterization of form II RuBisCO from the chemoautotrophic endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila. Limnol Oceanogr 48:48–54

    Article  CAS  Google Scholar 

  • Roeske CA, O’Leary MH (1984) Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23:6275–6284

    Article  CAS  Google Scholar 

  • Sahlmann C, Chan TY, Chan BKK (2011) Feeding modes of deep-sea lobsters (Crustacea: Decapoda: Nephropidae and Palinuridae) in Northwest Pacific waters: Functional morphology of mouthparts, feeding behaviour and gut content analysis. Zool Anz 250:55–66. doi:10.1016/j.jcz.2010.11.003

    Article  Google Scholar 

  • Segonzac M, de Saint Laurent M, Casanova M (1993) L’énigme du comportement trophique des crevettes Alvinocarididae des sites hydrothermaux de la dorsale médio-atlantique. Cah Biol Mar 34:535–571

  • Shimoda K, Aramaki Y, Nasuda J, Yokoyama H, Ishihi Y, Tamaki A (2007) Food sources for three species of Nihonotrypaea (Decapoda: Thalassinidea: Callianassidae) from western Kyushu, Japan, as determined by carbon and nitrogen stable isotope analysis. J Exp Mar Biol Ecol 342:292–312. doi:10.1016/j.jembe.2006.11.003

    Article  CAS  Google Scholar 

  • Stickney RR (1976) Food habits of Georgia estuary fishes II. Symphurus plagiusa (Pleuronectiformes: Cynoglossidae). Trans Am Fish Soc 105:202–207. doi:10.1577/1548-8659(1976)105<202:FHOGEF>2.0.CO;2

    Article  Google Scholar 

  • Streams ME, Fisher CR, Fiala-Médioni A (1997) Methanotrophic symbiont location and fate of carbon incorporated from methane in a hydrocarbon seep mussel. Mar Biol 129:465–476. doi:10.1007/s002270050187

    Article  CAS  Google Scholar 

  • Sweetman AK, Levin LA, Rapp HT, Schander C (2013) Faunal trophic structure at hydrothermal vents on the southern Mohn’s Ridge, Arctic Ocean. Mar Ecol Prog Ser 473:115–131. doi:10.3354/meps10050

    Article  Google Scholar 

  • Tarasov VG, Gebruk AV, Mironov AN, Moskalev LI (2005) Deep-sea and upper sublittoral hydrothermal vent communities: two different phenomena? Chem Geol 224:5–39. doi:10.1016/j.chemgeo.2005.07.021

    Article  CAS  Google Scholar 

  • Tsai PC, Yeh HM, Chan BKK, Chan TY (2009) Comparison between the catch composition of the French and ORE type beam trawls on deep-sea decapod crustaceans: implications for quantitative sampling of the deep-sea decapod biodiversity. Crustaceana 82:565–591. doi:10.1163/156854008X390326

    Article  Google Scholar 

  • Tsuchida S, Suzuki Y, Fujiwara Y, Kawato M, Uematsu K, Wamanaka T, Mizota C, Yamamoto H (2011) Epibiotic association between filamentous bacteria and the vent-associated galatheid crab, Shinkaia crosnieri (Decapoda: Anomura). J Biol Assoc UK 91:23–32

    Article  CAS  Google Scholar 

  • Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr Mar Biol Annu Rev 29:319–407

    Google Scholar 

  • Tunnicliffe V, Jensen RG (1987) Distribution and behaviour of the spider crab Macroregonia macrochira Sakai (Brachyura) around the hydrothermal vents of the northeast Pacific. Can J Zool 65:2443–2449. doi:10.1139/z87-369

    Article  Google Scholar 

  • Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton

    Google Scholar 

  • Van Dover CL (2002) Trophic relationships among invertebrates at the Kairei hydrothermal vent field (Central Indian Ridge). Mar Biol 141:761–772. doi:10.1007/s00227-002-0865-y

    Article  Google Scholar 

  • Van Dover CL, Fry B (1989) Stable isotopic compositions of hydrothermal vent organisms. Mar Biol 102:257–263. doi:10.1007/BF00428287

    Article  Google Scholar 

  • Van Dover CL, Fry B (1994) Microorganisms as food resources at deep-sea hydrothermal vents. Limnol Oceanogr 39:51–57

    Article  Google Scholar 

  • Van Dover CL, Fry B, Grassle JF, Humphris S, Rona PA (1988) Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the Mid-Atlantic Ridge. Mar Biol 98:209–216. doi:10.1007/BF00391196

    Article  Google Scholar 

  • Vidal VM, Vidal PM, Isaacs JD (1978) Coastal submarine hydrothermal activity off northern Baja California. J Geophys Res B 83:757–1774. doi:10.1029/JB083iB04p01757

    Article  Google Scholar 

  • Voight JR (2000) A deep-sea octopus (Graneledone cf. boreopacifica) as a shell crushing hydrothermal vent predator. J Zool Lond 252:335–341. doi:10.1111/j.1469-7998.2000.tb00628.x

    Article  Google Scholar 

  • Wang TW, Chan TY, Chan BKK (2013) Diversity and community structure of decapod crustaceans at hydrothermal vents and nearby deep-water fish grounds off Kueishan Island, northeastern Taiwan: a high deep-sea biodiversity area in the N.W. Pacific. Bull Mar Sci 89(2):505–528. doi:10.5343/bms.2012.1036

    Article  Google Scholar 

  • Williams MJ (1982) Natural food and feeding in the commercial sand crab Portunus pelagicus Linnaeus, 1766 (Crustacea : Decapoda : Portunidae) in Moreton bay, Queensland. J Exp Mar Biol Ecol 59:165–176. doi:10.1016/0022-0981(82)90113-7

    Article  Google Scholar 

  • Yang TF, Lan TF, Lee H-F, Fu C–C, Chuang P-C, Lo C-H, Chen C-H, Chen C-TA, Lee C-S (2005) Gas composition and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochem J 39:469–480

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Ministry of Science and Technology, Taiwan, a Career Development Award from Academia Sinica, and the Fisheries Agency, Council of Agriculture, Executive Yuan, Taiwan, R.O.C. The authors would like to thank the GNS laboratory, New Zealand, for analysing the stable isotope values of the samples. The authors would like to thank Chen I-Han and Chen Hsi-Nien (Academia Sinica) for supporting the field work in upper sublittoral vents, as well as the commercial trawler Jin Tong Long No. 26 for supporting the trawling surveys. Thanks are extended to Coralia V. Garcia, Wallace Academic Editing, Taiwan, for editing the English of the present paper. We would like to thank the four anonymous reviewers and the Associate Editor, Prof. Chris Harrod for their constructive comments, which greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benny K. K. Chan.

Additional information

Communicated by C. Harrod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TW., Chan, TY. & Chan, B.K.K. Trophic relationships of hydrothermal vent and non-vent communities in the upper sublittoral and upper bathyal zones off Kueishan Island, Taiwan: a combined morphological, gut content analysis and stable isotope approach. Mar Biol 161, 2447–2463 (2014). https://doi.org/10.1007/s00227-014-2479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-014-2479-6

Keywords

Navigation