Skip to main content
Log in

Full elastic properties characterization of wood by ultrasound using a single sample

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

This paper focuses on the characterization of the three-dimensional elastic properties of wood materials using the propagation velocity of ultrasonic waves in the context of the inspection and diagnosis of timber structures. The scientific innovation consists in exploiting only the velocities of the compression (P) waves and using a single sample. From a three-dimensional formulation of Hankinson and an analytical development which allows to define the relations between the properties of elasticity and the velocities of ultrasonic waves, the twelve elastic constants are determined by means of an optimization procedure. The experimental validation on a Douglas fir cube allows to have the three moduli of elasticity \(\left( {E_{\text{L}} ,E_{\text{R}} ,E_{\text{T}} } \right)\), the three shear moduli \(\left( {G_{\text{LR}} ,G_{\text{LT}} ,G_{\text{RT}} } \right)\) and the six Poisson’s ratios \(\left( {\nu_{\text{LR}} ,\nu_{\text{LT}} ,\nu_{\text{RT}} ,\nu_{\text{RL}} ,\nu_{\text{TL}} ,\nu_{\text{TR}} } \right)\). The longitudinal modulus \(\left( {E_{\text{L}} } \right)\) is more than eight times greater than the radial modulus \(\left( {E_{\text{R}} } \right)\), which is more than two and a half times greater than the tangential modulus \(\left( {E_{\text{T}} } \right)\). For the shear moduli, we obtain \(\left( {G_{\text{LR}} > G_{\text{LT}} > G_{\text{RT}} } \right)\). The Poisson's ratios meet the requirements of energy deformation positivity and stiffness matrix inversion. The values of the elastic constants obtained are in line with those from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abadie J, Robert D (1978) Une application du gradient réduit généralisé à un modèle macro-économique (An application of the generalized reduced gradient to a macroeconomic model). RAIRO-Oper Res 12(3):297–309

    Article  Google Scholar 

  • Afoutou JS, Dubois F, Sauvat N et al (2023) A novel three-dimensional model for the prediction of ultrasonic velocity in wood considering its orthotropy. Wood Sci Technol 57:605–623. https://doi.org/10.1007/s00226-023-01470-w

    Article  CAS  Google Scholar 

  • Alves RC, Mantilla JNR, Bremer CF, Carrasco EVM (2015) Application of acoustic tomography and ultrasonic waves to estimate stiffness constants of muiracatiara Brazilian wood. Bioressources 10(1):1845–1856

    CAS  Google Scholar 

  • Ashrafian A, Taheri Amiri MJ, Rezaie-Balf M, Ozbakkaloglu T, Lotfi-Omran O (2018) Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods. Constr Build Mater 190:479–494. https://doi.org/10.1016/j.conbuildmat.2018.09.047

    Article  CAS  Google Scholar 

  • Beall FC (2002) Overview of the use of ultrasonic technologies in research on wood properties. Wood Sci Technol 36(3):197–212. https://doi.org/10.1007/s00226-002-0138-4

    Article  CAS  Google Scholar 

  • Berndt H, Johnson GC (1995) Examination of wave propagation in wood from a microstructural perspective. In: Review of progress in quantitative nondestructive evaluation, pp 1661–1668

  • Bucur V (2006) Acoustics of wood, 2nd ed. Springer, New York. https://doi.org/10.1007/3-540-30594-7

  • Bucur V, Archer RR (1984) Elastic constants for wood by an ultrasonic method. Wood Sci Technol 18(4):255–265. https://doi.org/10.1007/BF00353361

    Article  Google Scholar 

  • Bucur V, Najafi SK (2003) Negative poisson ratios in wood and particleboard with ultrasonic technique. In: Green RE, Djordjevic BB, Hentschel MP (eds) Nondestructive characterization of materials XI. Springer, New York, pp 47–51. https://doi.org/10.1007/978-3-642-55859-7_8

  • Bucur V, Rasolofosaon PNJ (1998) Dynamic elastic anisotropy and nonlinearity in wood and rock. Ultrasonics 36(7):813–824. https://doi.org/10.1016/S0041-624X(98)00004-3

    Article  Google Scholar 

  • Burdzik WM, Nkwera PD (2002) Transverse vibration tests for prediction of stiffness and strength properties of full-size Eucalyptus grandis. For Prod J 52(6):63–67

    Google Scholar 

  • Chevalier Y (1988) Comportements élastique et viscoélastique des composites (Elastic and viscoelastic behaviour of composites). Techniques De L’ingénieur A7:750

    Google Scholar 

  • Crespo J, Aira JR, Vázquez C, Guaita M (2017) Comparative analysis of the elastic constants measured via conventional, ultrasound, and 3-D digital image correlation methods in Eucalyptus globulus Labill. BioResources 12(2):3728–3743

    Article  CAS  Google Scholar 

  • Cuxac P (1991). Propagation et atténuation des ondes ultrasoniques dans des roches fissurées et anisotropes (Propagation and attenuation of ultrasonic waves in fissured and anisotropic rocks) [Phd thesis, Université de Lorraine]

  • Dackermann U, Elsener R, Li J, Crews K (2016) A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood. Constr Build Mater 102–2:963–976

    Article  Google Scholar 

  • de Oliveira FGR, Sales A (2006) Relationship between density and ultrasonic velocity in Brazilian tropical woods. Biores Technol 97(18):2443–2446. https://doi.org/10.1016/j.biortech.2005.04.050

    Article  CAS  Google Scholar 

  • de Oliveira FGR, Miller KP, Candian M, Sales A (2006) Efeito do comprimento do corpo-de-prova na velocidade ultra-sônica em madeiras (Effect of specimen length on ultrasonic velocity in wood). Revista Árvore 30:141–145. https://doi.org/10.1590/S0100-67622006000100017

    Article  Google Scholar 

  • El Mouridi M, Laurent T, Brancheriau L, Arnould O, Famiri A, Hakam A, Gril J (2011) Searching for material symmetries in the burr wood of thuja by a direct contact ultrasonic method on spherical samples. Maderas Ciencia y Tecnología 13(3):285–296. https://doi.org/10.4067/S0718-221X2011000300004

    Article  Google Scholar 

  • Ettelaei A, Layeghi M, Zarea Hosseinabadi H, Ebrahimi G (2019) Prediction of modulus of elasticity of poplar wood using ultrasonic technique by applying empirical correction factors. Measurement 135:392–399. https://doi.org/10.1016/j.measurement.2018.11.076

    Article  ADS  Google Scholar 

  • Falk RH, Patton-Mallory M, McDonald KA (1989) Nondestructive testing of wood products and structures: state-of-the-art and research needs. Nondestructive Testing and Evaluation for Manufacturing and Construction; doe Reis, HLM, Ed, pp 137–147

  • Ferreira PdaS, Ramalho FMG, Couto AM, Protásio TP, Monteiro TC, Hein PRG (2023) Relationship among the stiffness, wave propagation speed, density and moisture content of pinus elliottii and bertholletia excelsa wood specimens. Wood Mater Sci Eng 18(1):151–160. https://doi.org/10.1080/17480272.2021.1996456

    Article  CAS  Google Scholar 

  • Forest Products Laboratory (2010) Wood handbook: Wood as an engineering material. Department of Agriculture Forest Service, Madison, Wisconsin

  • François MLM (1995) Identification des symétries matérielles de matériaux anisotropes. (Identification of the material symmetries of anisotropic materials) [PhD thesis, Université Pierre et Marie Curie - Paris 6]. https://theses.hal.science/tel-00435563

  • Gao S, Wang,X, Wang L, Allison RB (2012) Effect of temperature on acoustic evaluation of standing trees and logs: Part 1—Laboratory Investigation. Wood and Fiber Science 286–297

  • Gerhards CC (1982) Longitudinal stress waves for lumber stress grading: factors affecting applications: State of the art. For Prod J 32(2):20–25

    Google Scholar 

  • Goncalves R, da Costa OAL (2008) Influence of moisture content on longitudinal, radial, and tangential ultrasonic velocity for two Brazilian wood species. Wood Fiber Sci 40(4):580–586

    CAS  Google Scholar 

  • Gonçalves, R., Trinca, A. J., & Cerri, D. G. P. (2011). Comparison of Elastic Constants of Wood Determined by Ultrasonic Wave Propagation and Static Compression Testing. Wood and Fiber Science, 64–75.

  • Gonçalves R, Trinca AJ, Pellis BP (2014) Elastic constants of wood determined by ultrasound using three geometries of specimens. Wood Sci Technol 48(2):269–287. https://doi.org/10.1007/s00226-013-0598-8

    Article  CAS  Google Scholar 

  • Green, R. E., Djordjevic, B. B., & Hentschel, M. P. (2002, June 24). Nondestructive Characterization of Materials XI. Proceedings of the 11th International Symposium.

  • Green, D. W., Winandy, J. E., & Kretschmann, D. E. (1999). Mechanical properties of wood. Wood Handbook : Wood as an Engineering Material. Madison, WI : USDA Forest Service, Forest Products Laboratory, 1999. General Technical Report FPL ; GTR-113: Pages 4.1–4.45, 113. https://www.fs.usda.gov/research/treesearch/7149

  • Guitard, D. (1987). Mécanique du matériau bois et Composites. (Mechanics of wood and composite materials). Cépaduès-Edition.

  • Guitard, D., & El Amri, F. (1987). Modèles prévisionnels de comportement élastique tridimensionnel pour les bois feuillus et les bois résineux. (Predictive models of three-dimensional elastic behaviour for hardwoods and softwoods). Annales Des Sciences Forestières, 44(3), 335–358.

  • Gupta R, Sinha A (2012) Effect of grain angle on shear strength of Douglas-fir wood. Holzforschung 66(5):655–658. https://doi.org/10.1515/hf-2011-0031

    Article  CAS  Google Scholar 

  • Hankinson RL (1921) Investigation of crushing strength of spruce at varying angles of grain. Air Service Information Circular 259(3):130

    Google Scholar 

  • Hasegawa M, Takata M, Matsumura J, Oda K (2011) Effect of wood properties on within-tree variation in ultrasonic wave velocity in softwood. Ultrasonics 51(3):296–302. https://doi.org/10.1016/j.ultras.2010.10.001

    Article  PubMed  Google Scholar 

  • Katz JL, Spencer P, Wang Y, Misra A, Marangos O, Friis L (2008) On the anisotropic elastic properties of woods. J Mater Sci 43(1):139–145. https://doi.org/10.1007/s10853-007-2121-9

    Article  CAS  ADS  Google Scholar 

  • Kersemans, M., Martens, A., Degrieck, J., Van Den Abeele, K., Delrue, S., Pyl, L., ... & Van Paepegem, W. (2016). The ultrasonic polar scan for composite characterization and damage assessment: Past, present and future. Applied Sciences, 6(2), 58. DOI: https://doi.org/10.3390/app6020058

  • Keunecke D, Sonderegger W, Pereteanu K, Lüthi T, Niemz P (2007) Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41(4):309–327. https://doi.org/10.1007/s00226-006-0107-4

    Article  CAS  Google Scholar 

  • Kim KY (1986) A note on the Hankinson formula. Wood Fiber Sci 18(2):345–348

    Google Scholar 

  • Kohlhauser C, Hellmich C (2012) Determination of Poisson’s ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffnesses: Application to metals and wood. Eur J Mech A Solids 33:82–98. https://doi.org/10.1016/j.euromechsol.2011.11.009

    Article  Google Scholar 

  • Kránitz K, Deublein M, Niemz P (2014) Determination of dynamic elastic moduli and shear moduli of aged wood by means of ultrasonic devices. Mater Struct 47(6):925–936. https://doi.org/10.1617/s11527-013-0103-8

    Article  CAS  Google Scholar 

  • Lasdon, L. S., Fox, R. L., & Ratner, M. W. (1974). Nonlinear optimization using the generalized reduced gradient method. Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle, 8(V3), 73–103.

  • Llana DF, Iñiguez-Gonzalez G, Arriaga F, Niemz P (2014) Influence of temperature and moisture content on non-destructive measurements in Scots pine wood. Wood Research 59(5):769–780

    Google Scholar 

  • Longo R, Delaunay T, Laux D, El Mouridi M, Arnould O, Le Clézio E (2012) Wood elastic characterization from a single sample by resonant ultrasound spectroscopy. Ultrasonics 52(8):971–974. https://doi.org/10.1016/j.ultras.2012.08.006

    Article  CAS  PubMed  Google Scholar 

  • Longo R, Laux D, Pagano S, Delaunay T, Le Clézio E, Arnould O (2018) Elastic characterization of wood by Resonant Ultrasound Spectroscopy (RUS): A comprehensive study. Wood Sci Technol 52(2):383–402. https://doi.org/10.1007/s00226-017-0980-z

    Article  CAS  Google Scholar 

  • Marra GG, Pellerin RF, Galligan WL (1966) Nondestructive determination of wood strength and elasticity by vibration. Holz Roh- Werkst 24(10):460–466. https://doi.org/10.1007/BF02612875

    Article  Google Scholar 

  • Martens, A., Kersemans, M., Daemen, J., Verboven, E., Van Paepegem, W., Degrieck, J., ... & Van Den Abeele, K. (2017). Numerical study of the Time-of-Flight Pulsed Ultrasonic Polar Scan for the determination of the full elasticity tensor of orthotropic plates. Composite Structures, 180, 29–40. DOI: https://doi.org/10.1016/j.compstruct.2017.07.083

  • Mascia NT, Nicolas EA (2013) Determination of Poisson’s ratios in relation to fiber angle of a tropical wood species. Constr Build Mater 41:691–696. https://doi.org/10.1016/j.conbuildmat.2012.12.014

    Article  Google Scholar 

  • McBurney, R. S., & Drow, J. T. (1962). Young’s moduli and Poisson’s ratios of Douglas-fir and their relations to moisture content (No. 1528-D). Forest Products Laboratory, Forest Service. U. S. Departement of Agriculture.

  • Montero MJ, De la Mata J, Esteban M, Hermoso E (2015) Influence of moisture content on the wave velocity to estimate the mechanical properties of large cross-section pieces for structural use of Scots pine from Spain. Maderas Ciencia y Tecnología 17(2):407–420

    Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  MathSciNet  Google Scholar 

  • Osgood, W. R. (1928). Compressive Stress on Wood Surfaces Inclined to the Grain. Engin. News-Record. (Feb. 9.).

  • Ozyhar T, Hering S, Sanabria SJ, Niemz P (2013) Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Sci Technol 47(2):329–341. https://doi.org/10.1007/s00226-012-0499-2

    Article  CAS  Google Scholar 

  • Preziosa, C., Mudry, M., Launay, J., Gilletta, F. (1981). Détermination des constantes élastiques du bois par une méthode acoustique goniométrique. (Determination of elastic constants of wood by a goniometer acoustic method). CR Acad Sci Paris, 293(2), 91–94.

  • Rais, A., Poschenrieder, W., Pretzsch, H., & van de Kuilen, J.-W. G. (2014). Influence of initial plant density on sawn timber properties for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Annals of Forest Science, 71(5), Article 5. DOI: https://doi.org/10.1007/s13595-014-0362-8

  • Ross RJ, Brashaw BK, Pellerin RF (1998) Nondestructive evaluation of wood. For Prod J 48(1):14–19

    Google Scholar 

  • Royer D., Dieulesaint E., De Gennes P.G. (1996), Ondes élastiques dans les solides - Tome 1 : Propagation libre et guidée (Elastic waves in solids – Vol. 1: Free and guided propagation), Masson Edition, ISBN 9782225854224 et 222585422X.

  • Sakai H, Minamisawa A, Takagi K (1990) Effect of moisture content on ultrasonic velocity and attenuation in woods. Ultrasonics 28(6):382–385. https://doi.org/10.1016/0041-624X(90)90060-2

    Article  Google Scholar 

  • Trinca AJ, Gonçalves R (2009) Efeito das dimensões da seção transversal e da frequência do transdutor na velocidade de propagação de ondas de ultra-som na madeira (Effect of cross section dimensions and transducer frequency on the speed of propagation of ultrasound waves in wood. Rev Árvore 33:177–184. https://doi.org/10.1590/S0100-67622009000100019

    Article  Google Scholar 

  • van Wijk K, Simpson J, Hitchman S (2019) A modified Hankinson Equation for the wave speed of laser ultrasound in Radiata Pine. Wave Motion 89:57–64. https://doi.org/10.1016/j.wavemoti.2019.03.005

    Article  ADS  Google Scholar 

  • Vázquez C, Gonçalves R, Bertoldo C, Baño V, Vega A, Crespo J, Guaita M (2015) Determination of the mechanical properties of Castanea sativa Mill. Using ultrasonic wave propagation and comparison with static compression and bending methods. Wood Sci Technol 49(3):607–622. https://doi.org/10.1007/s00226-015-0719-7

    Article  CAS  Google Scholar 

  • Vössing KJ, Niederleithinger E (2018) Nondestructive assessment and imaging methods for internal inspection of timber. A Review, Holzforschung 72(6):467–476. https://doi.org/10.1515/hf-2017-0122

    Article  CAS  Google Scholar 

  • Woodward C, Minor J (1989) Further studies on elastic properties of douglas fir. J Mater Civ Eng 1(1):19–30. https://doi.org/10.1061/(ASCE)0899-1561(1989)1:1(19)

    Article  Google Scholar 

  • Yaitskova N, van de Kuilen JW (2014) Time-of-flight modeling of transversal ultrasonic scan of wood. J Acoust Soc Am 135(6):3409–3415

    Article  PubMed  ADS  Google Scholar 

  • Zahedi M, Kazemi Najafi S, Füssl J, Elyasi M (2022) Determining elastic constants of poplar wood (Populus deltoides) by ultrasonic waves and its application in the finite element analysis. Wood Mat Sci Eng 17(6):668–678. https://doi.org/10.1080/17480272.2021.1925962

    Article  CAS  Google Scholar 

  • Zhang X (2021) Surveillance et Auscultation des Ouvrages en bois par Identification des Champs Hydrique et Mécanique: Couplage des Méthodes Acoustiques et Electromagnétiques (Monitoring and Auscultation of Timber Structures by Identification of Water and Mechanical Fields: Coupling of Acoustic and Electromagnetic Methods) [PhD thesis, Université de Limoges]. https://tel.archives-ouvertes.fr/tel-03264682

  • Zhang X, Dubois F, Sauvat N, Takarli M (2022) Hybrid numerical method for the ultrasonic wave propagation velocity in orthotropic materials. Wood Sci Technol 56(6):1605–1630. https://doi.org/10.1007/s00226-022-01416-8

    Article  CAS  Google Scholar 

Download references

Funding

This research received funding from the Nouvelle Aquitaine region and the French Ministry of Higher Education, Research, and Innovation.

Author information

Authors and Affiliations

Authors

Contributions

Conception, material preparation, data collection and finite elements modeling were performed by Jérôme Sonagnon Afoutou, Xi Zhang and Frédéric Dubois. All authors performed the analysis and approved the final version of the manuscript to be published.

Corresponding author

Correspondence to Frédéric Dubois.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afoutou, J.S., Zhang, X. & Dubois, F. Full elastic properties characterization of wood by ultrasound using a single sample. Wood Sci Technol 58, 403–422 (2024). https://doi.org/10.1007/s00226-023-01525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-023-01525-y

Navigation