Skip to main content

Advertisement

Log in

On the anisotropic elastic properties of woods

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In 2003 Nature Materials article, Keckes et al. presented deformation properties of a variety of woods in relation to deformation of their individual wood cells. Their point is “The remarkable mechanical properties of biological materials reside in their complex hierarchical structure…”. This holds for mineral-based biological materials such as bone as well as for wood. Indeed, one of us (J.L.K.) introduced the concept that to explain the material properties of cortical bone, it was necessary to treat it as a complex material/structural hierarchical composite. Calculations to determine anisotropic properties of bone measured using ultrasonic wave propagation techniques, were extended to similar measurements on both soft and hard woods. These anisotropic properties calculations have been extended to include data based on mechanical measurements of orthotropic elastic constants of both soft and hard woods for comparison with both earlier ultrasonic measurements and mechanical testing on other woods. This work illustrates the fact that understanding and modeling the properties of wood is a complex task as the symmetry changes with scale. For example, lignin is isotropic, hemicellulose and cellulose are transversely isotropic, while the cells and microstructure have orthotropic symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The transverse isotropic matrices for both cellulose (Eq. 3.1) and hemicellulose (Eq. 3.2) provided on page 39 in Fracture and Fatigue in Wood [20] are incorrect as the authors inadvertently transposed the values of C11 and C33 from Cave [43].

References

  1. Hearmon RFS (1948) The elasticity of wood and plywood. His Majesty’s Stationary Office, London, UK

    Google Scholar 

  2. DAVIS HE, Troxell GE, Hauck GFW (1982) The testing of engineering materials, 4th edn. McGraw-Hill, New York

    Google Scholar 

  3. Wangaard FF (ed) (1982) Wood: its structure and properties. Pennsylvania State University, University Park, PA

    Google Scholar 

  4. Dietz AGH, Schaffer EL, Gromala DS (eds) (1982) Wood as a Structural Material, vol II. Pennsylvania State University, University Park, PA

    Google Scholar 

  5. Blomquist RF, Christiansen AW, Gillespie RH, Meyers GE (eds) (1983) Adhesive bonding of wood and other structural materials. Pennsylvania State University, University Park, PA

    Google Scholar 

  6. Freas AD, Moody RC, Soltis LA (eds) (1986) Wood: engineering design concepts. Pennsylvania State University, University Park, PA

    Google Scholar 

  7. Wood handbook: wood as an engineering material. Agricultural handbook 72, U.S. Government Printing Office, Washington DC (1987)

  8. Bucur V (1995) Acoustics of wood. CRC Press, Boca Raton, FL

    Google Scholar 

  9. Keckes J, Burgert I, et al. (2003) Nat Mater 2:810

    Article  CAS  Google Scholar 

  10. Katz JL (1976) In: Mates RE, Smith CR (eds) Advances in bioengineering. American Society of Mechanical Engineers, New York, p 17

    Google Scholar 

  11. Katz JL (1980) Nature 283:106

    Article  CAS  Google Scholar 

  12. Lang SB (1970) IEEE Trans Biomed Eng 17:101

    CAS  Google Scholar 

  13. Yoon HS, Katz JL (1976) J Biomech 9:407

    Article  CAS  Google Scholar 

  14. Yoon HS, Katz JL (1976) J Biomech 9:459

    Article  CAS  Google Scholar 

  15. Bonfield W, Grynpas MD (1977) Nature 270:453

    Article  CAS  Google Scholar 

  16. Yoon HS, Newnham RE (1973) Am Mineral 54:1193

    Google Scholar 

  17. Katz JL, Ukraincik K (1971) J Biomech 4:221

    Article  Google Scholar 

  18. Kretschmann D (2003) Nature Mater 2:775

    Article  CAS  Google Scholar 

  19. Lakes R (1993) Nature 361:511

    Article  Google Scholar 

  20. Smith I, Landis E, Gong M (2003) Fracture and fatigue in wood. John Wiley & Sons Inc., Somerset, NJ, p 39

    Google Scholar 

  21. Collins MW, Hunt DG, Atherton MA (eds) (2004) Optimization mechanics in nature. WIT Press, Great Britain

    Google Scholar 

  22. Navi P, Heger F (2004) In: MRS Bulletin Special Issue: Construction Materials: From Innovation to Conservation 29(5):332

  23. Staff Writers and Contributors (2004) Mech Eng 126(7):40

    Google Scholar 

  24. Perkalskis BS, Freeman JR, Suhov A (2004) Eur J Phys 25:323

    Article  Google Scholar 

  25. Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Eur J Mech A/Solids 24:1030

    Article  Google Scholar 

  26. Katz JL, Lipson S, Yoon HS, Maharidge R, Meunier A, Cristel P (1984) Calc Tissue Inter 36:S31

    Article  Google Scholar 

  27. Bucur V (1980) Catgut Acoust Soc Newsletter 33:24

    Google Scholar 

  28. Bucur V, Archer RR (1984) Wood Sci Technol 18:255

    Article  Google Scholar 

  29. Katz JL, Meunier A (1990) J Mater Sci: Mater Med 1:1

    Article  Google Scholar 

  30. Katz JL, Meunier A (1987) J Biomech 20:1063

    Article  CAS  Google Scholar 

  31. Chung DH, Buessem WR (1968) In: Vahldiek FW, Mersol SA (eds) Anisotropy in single crystal refractory compounds, vol 2. Plenum Press, New York, p 217

  32. Lipson S, Katz JL (1984) J Biomech 17:231

    Article  CAS  Google Scholar 

  33. Forest Products Laboratory, Wood Handbook, Chpt 4. U.S.D.A., Washington, DC, p 4 (1999)

  34. Currey J (2002) Bone: structure and mechanics. Princeton University Press, Princeton, NJ

    Google Scholar 

  35. Lucchinetti E (2001) In: Cowin S (ed) Bone mechanics handbook, Chpt 12, 2nd edn. CRC Press, Boca Raton, FL, p 1

  36. Lucchinetti E (2001) In: Cowin S (ed) Bone mechanics handbook, Chpt 13, 2nd edn. CRC Press, Boca Raton, FL, p 1

  37. Cowin S (ed) (2001) Bone mechanics handbook, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  38. Kretschmann DE, Cramer SM, Lakes RS, Schmidt TW (2006) In: Stokke DD, Groom LH (eds) Characterization of the cellulosic cell wall. Blackwell, Oxford, UK, p 147

    Google Scholar 

  39. Cramer SM, Kretschmann DE, Lakes RS, Schmidt TW (2005) Holzforschung 59:539

    Article  Google Scholar 

  40. Cousins WJ (1976) Wood Sci Technol 10:9

    Article  Google Scholar 

  41. Cave ID (1978) Wood Sci Technol 12:75

    Article  Google Scholar 

  42. Cave ID (1969) Wood Sci Technol 3:40

    Article  Google Scholar 

  43. Cave ID (1968) Wood Sci Technol 2:268

    Article  Google Scholar 

Download references

Acknowledgements

This work is a contribution from the UMKC Center for Research on Interfacial Structure & Properties (UMKC-CRISP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lawrence Katz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, J.L., Spencer, P., Wang, Y. et al. On the anisotropic elastic properties of woods. J Mater Sci 43, 139–145 (2008). https://doi.org/10.1007/s10853-007-2121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2121-9

Keywords

Navigation