Skip to main content

Advertisement

Log in

Hardness and fracture morphology of reaction wood from Pinus merkusii and Agathis loranthifolia

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate and compare the fracture morphology in hardness test of compression (CW), lateral (LW), and opposite woods (OW) of Pinus merkusii and Agathis loranthifolia growing in Indonesia. The hardness of the transverse, radial, and tangential surfaces was examined using Brinell’s method, according to the Korean standard. The fracture surfaces of hardness tested samples were observed by scanning electron and optical microscopy. On all surfaces from both species, CW showed the highest hardness, and no significant differences were detected between LW and OW. On the transverse surface, CW of P. merkusii showed brittle-fractured cell wall, while that of A. loranthifolia displayed smooth cell wall. CW of both species showed intercellular and intrawall failures and a narrow lumen opening. LW of both species and OW of P. merkusii showed folded earlywood tracheids with a crack, whereas in the latewood of P. merkusii, LW and OW displayed smooth cell wall and a narrow lumen opening. OW of A. loranthifolia showed collapsed cell wall. On the radial surface, CW of both species showed buckling tracheids in the tangential direction. LW and OW of both species exhibited shortening earlywood tracheids with folded cell walls, while LW and OW of P. merkusii exhibited buckling latewood tracheids in the radial direction. On the tangential surface, buckling tracheids occurred near the fractured rays in all parts of both species. In conclusion, CW exhibited distinctive hardness and fracture morphologies compared with LW and OW in P. merkusii and A. loranthifolia; in addition, hardness and fracture morphology differed between the two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Akande JA, Kyanka GH (1990) Evaluation of tensile fracture in aspen using fractographic and theoretical methods. Wood Fiber Sci 22:283–297

    Google Scholar 

  • Ameen MS (1995) Fractography: fracture topography as a tool in fracture mechanics and stress analysis. An introduction. Geol Soc Spec Publ 92:1–10

    Article  Google Scholar 

  • Barnett JR, Gril J, Saranpää P (2014) Introduction. In: Gardiner B, Barnett J, Saranpää P, Gril J (eds) The biology of reaction wood. Springer, New York, pp 1–11. https://doi.org/10.1007/978-3-642-10814-3

    Chapter  Google Scholar 

  • Boone RS, Chudnoff M (1972) Compression wood formation and other characteristics of plantation-grown Pinus caribaea. Rio Pedras, Puerto Rico: USDA Forest Service Research Paper. Inst Trop for 13:1–16

    Google Scholar 

  • Cockrell RA, Knudson RM (1973) A comparison of static bending, compression and tension parallel to grain and toughness properties of compression wood and normal wood of a Giant Sequoia. Wood Sci Technol 7(4):241–250. https://doi.org/10.1007/BF00351069

    Article  Google Scholar 

  • Côté WA, Hanna RB (1983) Ultrastructural characteristics of wood fracture surfaces. Wood Fiber Sci 15:135–163

    Google Scholar 

  • Darmawan W, Nandika D, Afaf BDH, Rahayu I, Dumasari L (2018) Radial variation in selected wood properties of Indonesian Merkusii Pine. J Korean Wood Sci Technol 46(4):323–337. https://doi.org/10.5658/WOOD.2018.46.4.323

    Article  Google Scholar 

  • Delorme A, Verhoff S (1975) Zellwanddeformationen in sturmgeschädigtem Fichtenholz unter dem Rasterelektronenmikroskop. (Cell wall deformations in Norway spruce due to damage from storm, as revealed by scanning electron microscopy). Holz Roh- Werkst 33:456–460. https://doi.org/10.1007/BF0277010

    Article  Google Scholar 

  • Dinwoodie JM (1976) Causes of brashness in timber. Leiden Bot Ser 3:238–252

    Google Scholar 

  • Donaldson LA, Grace J, Downes GM (2004) Within-tree variation in anatomical properties of compression wood in radiata pine. IAWA J 25(3):253–271. https://doi.org/10.1163/22941932-90000364

    Article  Google Scholar 

  • Eom YG, Butterfield BG (1997) Anatomical comparisons of compression, opposite, and lateral woods in New Zealand radiata pine (Pinus radiata D. Don). J Korean Wood Sci Technol 25(2):88–99

    Google Scholar 

  • Eom YG, Butterfield BG (2001) Anatomical comparison of compression, opposite, and lateral woods in New Zealand rimu (Dacrydium cupressinum Lamb.). J Korean Wood Sci Technol 29(3):1–13

    Google Scholar 

  • Furuno T, Saiki H, Harada H (1969) Ultrastructural feature of compression wood tracheids stressed to tensile failure. J Jpn Wood Res Soc 15:104–108

    Google Scholar 

  • Gindl W, Teischinger AA (2003) Comparison of the TL-shear strength of normal and compression wood of European larch. Holzforschung 57(4):421–426. https://doi.org/10.1515/HF.2003.062

    Article  CAS  Google Scholar 

  • Gindl W, Gupta HS, Grünwald C (2002) Lignification of spruce tracheid secondary cell walls related to longitudinal hardness and modulus of elasticity using nano-indentation. Can J Bot 80:1029–1033. https://doi.org/10.1139/B02-091

    Article  Google Scholar 

  • Grossman PUA, Wold MB (1971) Compression fracture of wood parallel to the grain. Wood Sci Technol 5(2):147–156. https://doi.org/10.1007/BF01134225

    Article  Google Scholar 

  • Gryc V, Horáček P (2007) Variability in density of spruce (Picea abies [L.] Karst.) wood with the presence of reaction wood. J for Sci 53(3):129–137

    Article  Google Scholar 

  • Hannrup B, Danell Ö, Ekberg I, Moëll M (2001) Relationships between wood density and tracheid dimensions in Pinus sylvestris L. Wood Fiber Sci 33:173–181

    Google Scholar 

  • Holmberg H (2000) Influence of grain angle on Brinell hardness of Scots pine. (Pinus sylvestris L.). Holz Roh Werkst 58:91–95

    Article  Google Scholar 

  • Huang Y, Fei B, Yu Y, Wang S, Shi Z, Zhao R (2012) Modulus of elasticity and hardness of compression and opposite wood cell walls of masson pine. BioResources 7(3):3028–3037

    Google Scholar 

  • Kienholz R (1930) The wood structure of a “pistol-butted” mountain hemlock. Am J Bot 17(8):739–764

    Article  Google Scholar 

  • Kim SH, Kim DH, Jo JI, Kim JH, Lee SH, Choi JK, Kim NH (2021) A comparative study on the physical and mechanical properties of Dahurian larch and Japanese larch grown in Korea. Wood Res 66(2):415–426. https://doi.org/10.37763/wr.1336-4561/66.3.415426

    Article  Google Scholar 

  • KS F 2198 (2016) Determination of density and specific gravity of wood. KSA, Korean Standards Association, Seoul

    Google Scholar 

  • KS F 2212 (2020) Method of hardness test for wood. KSA, Korean Standards Association, Seoul

    Google Scholar 

  • Kučera LJ, Bariska M (1982) On the fracture morphology in wood. Wood Sci Technol 16(4):241–259

    Article  Google Scholar 

  • Martawijaya A, Kartasujana I, Kadir K, Prawira SA (2005) Atlas Kayu Indonesia Jilid I, 3rd edn. Pusat Penelitian dan Pengambangan Hasil Hutan, Bogor (in Indonesian)

    Google Scholar 

  • Mikkola MT, Korhonen RK (2013) Effect of latewood proportion on mechanical properties of Finnish pine wood modified with compression drying. Wood Fiber Sci 45(4):335–342

    CAS  Google Scholar 

  • Nugroho N, Surjokusumo S (2002) Agathis loranthifolia an excellent structure material for wooden aircraft. In: Proceedings of the 7th World Conference on Timber Engineering, Shah Alam, Malaysia, vol 2, pp 370–376

  • Onaka F (1949) Studies on compression and tension wood. Wood Research. Bull Wood Res Inst Kyoto Univ Jpn 24(3):1–88

    Google Scholar 

  • Pandit IKN, Rahayu IS (2007) Ultra structure of compression wood of Agathis (Agathis loranthifolia Salisb.) and its relation to physical properties. Jurnal Ilmu Dan Teknologi Kayu Tropis 5(1):1–6 (in Indonesian)

    Google Scholar 

  • Park S, Saiki H, Harada H (1979) Structure of branch wood in akamatsu (Pinus densiflora Sieb. et Zucc.)(1). Distribution of compression wood, structure of annual ring and tracheid dimensions. Mem Coll Agric Kyoto Univ 25(5):311–317

    Google Scholar 

  • Pillow MY, Luxford RF (1937) Structure, occurrence and properties of compression wood. US Dept Agr Tech Bull 546:1–32

    Google Scholar 

  • Purba K, Sumarna E (1987) Chemical analysis of twenty seven wood species from West Java (Indonesia). Jurnal Penelitian Hasil Hutan (indonesia) 4(3):26–29. https://doi.org/10.20886/jphh.1987.4.3.26-29

    Article  Google Scholar 

  • Purusatama BD, Kim NH (2018) Quantitative anatomical characteristics of compression wood, lateral wood, and opposite wood in the stem wood of Ginkgo biloba L. BioResources 13(4):8076–8088. https://doi.org/10.15376/biores.13.4.8076-8088

    Article  CAS  Google Scholar 

  • Purusatama BD, Kim NH (2020) Cross-field pitting characteristics of compression, lateral, and opposite wood in the stem wood of Ginkgo biloba and Pinus densiflora. IAWA J 41(1):48–60. https://doi.org/10.1163/22941932-00002107

    Article  Google Scholar 

  • Purusatama BD, Choi JK, Lee SH, Kim NH (2020) Microfibril angle, crystalline characteristics, and chemical compounds of reaction wood in stem wood of Pinus densiflora. Wood Sci Technol 54:123–137. https://doi.org/10.1007/s00226-019-01140-w

    Article  CAS  Google Scholar 

  • Purusatama BD, Febrianto F, Lee SH, Kim NH (2021a) Physical and mechanical properties of reaction wood of tropical softwood species. Eur J Wood Prod 79:241–243. https://doi.org/10.1007/s00107-020-01602-0

    Article  CAS  Google Scholar 

  • Purusatama BD, Kim JH, Yang GU, Febrianto F, Hidayat W, Lee SH, Kim NH (2021b) Qualitative anatomical characteristics of compression, lateral, and opposite woods in Pinus merkusii and Agathis loranthifolia. Jurnal Sylva Lestari 9(2):213–222. https://doi.org/10.23960/jsl29213-222

    Article  Google Scholar 

  • Saiki H (1988) Failure modes of wood. J Soc Mater Sci Jpn 37(416):529–534. https://doi.org/10.2472/jsms.37.529

    Article  Google Scholar 

  • Saiki H, Furukawa I, Harada H (1972) An observation on tensile fracture of wood by scanning electron microscope. Bull Kyoto Univ Forest 43:309–319

    Google Scholar 

  • Sawada M (1951) Tests on the shear and hardness of compression wood of Todo-fir (Abies mayriana MIYABE et KUDO). J Jpn for 33(11):379–383. https://doi.org/10.11519/jjfs1934.33.11_379

    Article  Google Scholar 

  • Tarmian A, Azadfallah M (2009) Variation of cell features and chemical composition in spruce consisting of opposite, normal, and compression wood. BioResources 4(1):194–204

    CAS  Google Scholar 

  • Timell TE (1982) Recent progress in the chemistry and topochemistry of compression wood. Wood Sci Technol 16:83–122

    Article  CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms, vol 1–3. Springer, Berlin. https://doi.org/10.1163/22941932-90001077

    Book  Google Scholar 

  • Wardrop AB (1951) Cell wall organization and the properties of xylem. Aust J Sci Res 3(1):1–13

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Science and Technology Support Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) (NRF-2019K1A3A9A01000018), Basic Science Research Program through NRF funded by the Ministry of Education (NRF-2016R1D1A1B01008339; No. 2018R1A6A1A03025582), and Kangwon National University. In addition, we would like to thank Editage (www.editage.co.kr) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Hun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purusatama, B.D., Febrianto, F., Lee, S.H. et al. Hardness and fracture morphology of reaction wood from Pinus merkusii and Agathis loranthifolia. Wood Sci Technol 56, 1331–1351 (2022). https://doi.org/10.1007/s00226-022-01413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-022-01413-x

Navigation