Skip to main content
Log in

Mechanical behavior of chemically modified Norway spruce: a generic hierarchical model for wood modifications

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Modifications alter hygro-mechanical properties of wood in non-trivial ways that depend on modification treatment and wood microstructure. Generic micromechanical models with modifications on the cellular scale of spruce are proposed and studied, such as partial and entire lumen filling with isotropic materials, as well as modification of S2-layer properties. Based on a hierarchical micromechanical model, hygro-mechanical response surfaces of the modified, orthotropic material are predicted. Simulation results are compared to experimental data. The findings can be used for optimizing modification treatments, as well as for calculating the behavior in graded situations, common to treatments with limited modification depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Astley R, Stol K, Harrington J (1998) Modelling the elastic properties of softwood. Holz Roh Werkst 56(1):43–50

    Article  Google Scholar 

  • Cave ID (1978a) Modelling moisture-related mechanical properties of wood part I: properties of the wood constituents. Wood Sci Technol 12:75–86

    Article  Google Scholar 

  • Cave ID (1978b) Modelling moisture-related mechanical properties of wood part II: computation of properties of a model of wood and comparison with experimental data. Wood Sci Technol 12(2):127–139

    CAS  Google Scholar 

  • Chamis CC (1983) Simplified composite micromechanics equations for hygral, thermal and mechanical properties. SAMPE Quarterly 15(3):1–19

    Google Scholar 

  • Cousins W (1976) Elastic modulus of lignin as related to moisture content. Wood Sci Technol 10:9–17

    Article  Google Scholar 

  • Cousins W (1978) Young’s modulus of hemicellulose as related to moisture content. Wood Sci Technol 12(3):161–167

    Article  CAS  Google Scholar 

  • Derome D, Rafsanjani A, Hering S, Dressler M, Patera A, Lanvermann C, Sedighi Gilani M, Wittel F, Niemz P, Carmeliet J (2013) The role of water in the behavior of wood. J Build Phys 36(4):398–421

    Article  Google Scholar 

  • Dinwoodie JM (2000) Timber: its nature and behaviour, second edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    Article  CAS  Google Scholar 

  • Ermeydan MA, Cabane E, Gierlinger N, Koetz J, Burgert I (2014) Improvement of wood material properties via in situ polymerization of styrene into tosylated cell walls. RSC Adv 4:12981–12988

    Article  CAS  Google Scholar 

  • Fengel D (1969) The ultrastructure of cellulose from wood. Wood Sci Technol 3(3):203–217

    Article  CAS  Google Scholar 

  • Fernandes A, Thomas L, Altaner C, Callow P, Forsyth V, Apperley D, Kennedy C, Jarvis M (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108:E1195–E1203

    Article  PubMed  Google Scholar 

  • Halpin JC, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Article  CAS  Google Scholar 

  • Hassani MM, Wittel FK, Ammann S, Niemz P, Herrmann HJ (2016) Moisture-induced damage evolution in laminated beech. Wood Sci Technol 50(5):917–940

    Article  CAS  Google Scholar 

  • Hill CA (2006) Wood modification: chemical, thermal and other processes. Wiley, New York

    Book  Google Scholar 

  • Hon DNS, Shiraishi N (2000) Wood and cellulosic chemistry, revised, and expanded. CRC Press, Boca Raton

    Google Scholar 

  • Kahle E, Woodhouse J (1994) The influence of cell geometry on the elasticity of softwood. J Mater Sci 29(5):1250–1259

    Article  Google Scholar 

  • Keplinger T, Cabane E, Chanana M, Hass P, Merk V, Gierlinger N, Burgert I (2015) A versatile strategy for grafting polymers to wood cell walls. Acta Biomater 11:256–263

    Article  CAS  PubMed  Google Scholar 

  • Kollmann FF, Côté WA (1968) Principles of wood science and technology: part 1 solid wood. Springer, New York

    Book  Google Scholar 

  • Kumar S (2007) Chemical modification of wood. Wood Fiber Sci 26(2):270–280

    Google Scholar 

  • Lanvermann C, Evans R, Schmitt U, Hering S, Niemz P (2013) Distribution of structure and lignin within growth rings of norway spruce. Wood Sci Technol 47(3):627–641

    Article  CAS  Google Scholar 

  • Neagu RC, Gamstedt EK (2007) Modelling of effects of ultrastructural morphology on the hygroelastic properties of wood fibres. J Mater Sci 42(24):10254–10274

    Article  CAS  Google Scholar 

  • Neuhaus H (1983) Über das elastische Verhalten von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Eur J Wood Prod 41(1):21–25

    Article  Google Scholar 

  • Niemz P, Caduff D (2008) Untersuchungen zur Bestimmung der Poissonschen Konstanten an Fichtenholz. Holz Roh Werkst 66(1):1–4

    Article  Google Scholar 

  • Niemz P, Sonderegger W (2017) Holzphysik: Physik des Holzes und der Holzwerkstoffe. Carl Hanser Verlag, Munich

    Book  Google Scholar 

  • Olaniran S, Michen B, Mora Mendez D, Wittel FK, Bachtiar E, Burgert I, Rüggeberg M (2019) Mechanical behaviour of chemically modified Norway spruce (Picea abies L. Karst.): experimental mechanical studies on spruce wood after methacrylation and in situ polymerization of styrene. Wood Sci Technol. https://doi.org/10.1007/s00226-019-01080-5

    Article  Google Scholar 

  • Perré P, Huber F (2007) Measurement of free shrinkage at the tissue level using an optical microscope with an immersion objective: results obtained for douglas fir (Pseudotsuga menziesii) and spruce (picea abies). Ann For Sci 64(3):255–265

    Article  Google Scholar 

  • Persson K (2000) Micromechanical modelling of wood and fibre properties. Dissertation, Lund University

  • Qing H, Mishnaevsky L (2009) Moisture-related mechanical properties of softwood: 3d micromechanical modeling. Comput Mater Sci 46(2):310–320

    Article  Google Scholar 

  • Qing H, Mishnaevsky L (2010) 3D multiscale micromechanical model of wood: from annual rings to microfibrils. Int J Solids Struct 47(9):1253–1267

    Article  Google Scholar 

  • Rafsanjani A, Derome D, Wittel FK, Carmeliet J (2012) Computational up-scaling of anisotropic swelling and mechnical behavior of hierarchical cellular materials. Compos Sci Technol 72(6):744–751

    Article  Google Scholar 

  • Rowell RM (2012) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton

    Book  Google Scholar 

  • Saavedra Flores EI, Haldar S (2016) Micro-macro mechanical relations in Palmetto wood by numerical homogenisation. Comput Struct 154:1–10

    Article  Google Scholar 

  • Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129

    Article  CAS  Google Scholar 

  • Simulia (2014) ABAQUS Documentation v. 6.14. Dassault Systems

  • Wallström L, Lindberg H, Johansson I (1995) Wood surface stabilization. Holz Roh Werkst 53(2):87–92

    Article  Google Scholar 

  • Wittel FK (2019) Wood modification simulation results. Mendeley Data v1 https://doi.org/10.17632/j2wb76ys8c.1

  • Wypych G (2012) PS polystyrene. In: Wypych G (ed) Handbook of polymers. Elsevier, Oxford, pp 541–547

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was funded by the Swiss National Science Foundation in the National Research Programme NRP 66 - Resource Wood under Grant No. 406640-140625: Improved wood materials for structures and interior applications. SOO acknowledges the financial support provided by the Federal Commission for Scholarships for Foreign Students with the award of Swiss Government Excellence Scholarship for doctoral research. In addition, the authors acknowledge M. Fuhr for sharing phase contrast tomographic raw data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk K. Wittel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. J. Herrmann: on leave from CNRS UMR 7636, PMMH, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora Mendez, D.F., Olaniran, S.O., Rüggeberg, M. et al. Mechanical behavior of chemically modified Norway spruce: a generic hierarchical model for wood modifications. Wood Sci Technol 53, 447–467 (2019). https://doi.org/10.1007/s00226-019-01082-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-019-01082-3

Navigation