Skip to main content
Log in

Study of thermal decomposition process and the reaction mechanism of the eucalyptus wood

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The mass loss of eucalyptus wood was measured against time and temperature at four different heating rates (5, 10, 15, 20 °C/min), in nitrogen environment, through thermogravimetry analysis technique. These measurements revealed that the decomposition of wood samples occurred in three stages (dehydration stage, active stage and passive stage), and the maximum decomposition peak in DTG curve shifted towards higher temperature range with increase in heating rate. In addition, the decomposition kinetic parameters were determined by adopting two thermal kinetic methods viz. Flynn–Wall–Ozawa and modified Coats and Redfern. Further, from the master curves (generated through different values of g(α) and f(α)) and experimental curve obtained using the Criado method, the kinetic mechanism involved in the pyrolysis of the eucalyptus wood was commented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arora S, Kumar M, Kumar M (2012) Catalytic effect of bases in impregnation of guanidine nitrate on Poplar (Populus) wood. J Therm Anal Calorim 107:1277–1286

    Article  CAS  Google Scholar 

  • Bianchi O, Castel CD, Oliveira VB (2010) Nonisothermal degradation of wood using thermogravimetric measurements. Polímeros 20:395–400

    Article  CAS  Google Scholar 

  • Blasi DC (2008) Modeling chemical and physical process of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90

    Article  Google Scholar 

  • Carpenter D, Westover TL, CzernikaS Jablonskia W (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem 16:384–406

    Article  CAS  Google Scholar 

  • Chen Z, Hu M, Zhu X, Guo D, Liu S, Hu Z, Xiao B, Wang J, Laghari M (2015) Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Biores Technol 192:441–450

    Article  CAS  Google Scholar 

  • Coats AW, Redfern JP (1964) Kinetic parameters from Thermogravimetry data. Nature 201:68

    Article  CAS  Google Scholar 

  • Criado JM, Málek J, Ortega A (1989) Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta 147:377–385

    Article  CAS  Google Scholar 

  • Ding Y, Ezekoye OA, Lu S, Wang C (2016) Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Convers Manag 120:370–377

    Article  CAS  Google Scholar 

  • Fantozzi F, D’Alessandro B, Bidini G (2003) IPRP–Integrated pyrolysis regenerated plant—gas turbine and externally heated rotary-kiln pyrolysis as a biomass waste energy conversion system. Influence of thermodynamic parameters. Proc Inst Mech Eng A J Power Energ 217:519–527

    Article  CAS  Google Scholar 

  • Flynn J, Wall L (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Pol Lett 4:323–328

    Article  CAS  Google Scholar 

  • Gasparovic L, Korenova Z, Jelemensky L (2010) Kinetic study of wood chips decomposition by TGA. Chem Pap 64:174–181

    Article  CAS  Google Scholar 

  • Gašparovic L, Labovský J, Markoš J, Jelemenský L (2012) Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chem Biochem Eng Q 26:45–53

    Google Scholar 

  • Goncalves B, Till D, Fasina O, Tamang B, Gallagher T (2015) Influence of bark on the physical and thermal decomposition properties of short-rotation eucalyptus. Bioenerg Resour 8:1414–1423

    Article  CAS  Google Scholar 

  • Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev 12:504–517

    Article  CAS  Google Scholar 

  • May YA, Jeguirim M, Dorge S, Trouvé G, Said R (2012) Study on the thermal behavior of different date palm residues: characterization and devolatilization kinetics under inert and oxidative atmospheres. Energy 44:702–709

    Article  Google Scholar 

  • Órfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel 78:349–358

    Article  Google Scholar 

  • Ozawa T (1965) A new method of analysing thermogravimetric data. B Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  • Parikh J, Channiwala SA, Ghosal GK (2007) A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86:1710–1719

    Article  CAS  Google Scholar 

  • Parthasarathy P, Narayanan KS, Arockiam L (2013) Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass Bioenerg 58:58–66

    Article  CAS  Google Scholar 

  • Pérez-Maqueda LA, Criado JM (2000) The accuracy of Senum and Yang’s approximations to the Arrhenius integral. J Therm Anal Calorim 60:909–915

    Article  Google Scholar 

  • Poletto M, Dettenborn J, Pistor V, Zeni M, Zattera A (2010) Materials produced from plant biomass. Part I: evaluation of thermal stability and pyrolysis of wood. Mater Res 13:375–379

    Article  CAS  Google Scholar 

  • Poletto M, Pistor V, Zeni M, Zattera AJ (2011) Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping process. Polym Degrad Stab 96:679–685

    Article  CAS  Google Scholar 

  • Poletto M, Zattera AJ, Santana RMC (2012) Thermal decomposition of wood: kinetics and degradation mechanisms. Biores Technol 126:7–12

    Article  CAS  Google Scholar 

  • Popescu MC, Popescu CM, Lisa G, Sakata Y (2011) Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct 988:65–72

    Article  CAS  Google Scholar 

  • Quan C, Li A, Gao N (2009) Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Manage 29:2353–2360

    Article  CAS  Google Scholar 

  • Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2010) A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab 95:733–739

    Article  Google Scholar 

  • Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Biores Technol 109:163–172

    Article  CAS  Google Scholar 

  • Sharma P, Diwan PK (2016) Investigation of thermal decomposition parameters of flame retardant impregnated eucalyptus wood. Int Wood Prod J 7:144–148

    Article  Google Scholar 

  • Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Biores Technol 50:1081–1096

    CAS  Google Scholar 

  • Shen J, Igathinathane C, Yu M, Pothula AK (2015) Biomass pyrolysis and combustion integral and differential reaction heats with temperatures using thermogravimetric analysis/differential scanning calorimetry. Biores Technol 185:89–98

    Article  CAS  Google Scholar 

  • Slopiecka K, Bartocci P, Fantozzi F (2012) Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energ 97:491–497

    Article  CAS  Google Scholar 

  • Vecchio S, Luciano G, Franceschi E (2006) Explorative kinetic study on the thermal degradation of five wood species for applications in the archaeological field. Anal Chim 96:715

    Article  CAS  Google Scholar 

  • Wongsiriamnuay T, Tippayawong N (2010) Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Biores Technol 101:5638–5644

    Article  CAS  Google Scholar 

  • Wu Y, Dollimore D (1998) Kinetic studies of thermal degradation of natural cellulosic materials. Themrochimica Acta 324:46–57

    Google Scholar 

  • Yin CY (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90:1128–1132

    Article  CAS  Google Scholar 

  • Yorulmaz SY, Atimtay AT (2009) Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Process Technol 90:939–946

    Article  CAS  Google Scholar 

  • Zheng A, Jiang L, Zhao Z, Chang S, Huang Z, Zhao K, He F, Li H (2016) Effect of hydrothermal treatment on chemical structure and pyrolysis behavior of eucalyptus wood. Energ Fuels 30:3057–3065

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to Maharaja Aggarsain Udyog (Yamunanagar) in Haryana, India for providing veneers of eucalyptus wood and for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Diwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Diwan, P.K. Study of thermal decomposition process and the reaction mechanism of the eucalyptus wood. Wood Sci Technol 51, 1081–1094 (2017). https://doi.org/10.1007/s00226-017-0924-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-017-0924-7

Navigation