Skip to main content

Advertisement

Log in

Influence of Bark on the Physical and Thermal Decomposition Properties of Short-Rotation Eucalyptus

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Highly productive short-rotation woody crops is one group of biomass feedstocks that has been identified as having the potential of meeting the goal of reducing the world’s reliance on crude oil. The goal of this project is to quantify the influence of bark on the physical properties, moisture sorption properties, and thermal decomposition of short-rotation (3 years old) Eucalyptus—the most widely planted short-rotation hardwood grown in the world. Results obtained from the study show that the physical properties of ground samples were significantly different between “no-bark” and “with-bark” samples with the bulk density of the with-bark samples decreasing by up to 20 % with a corresponding increase in compressibility of up to 75 %. The moisture sorption rate and the equilibrium moisture relations of the two samples were also significantly different. The susceptibility of no-bark sample to microbial degradation was higher. Thermal decomposition rate and peak temperatures for cellulose and hemicellulose were not affected by the presence of bark. The information obtained from this study will be important in the design and selection of systems for handling, storage, transporting, and thermochemical conversion of short-rotation Eucalyptus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. EPA (2013) Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2011. EPA Report No. 430-R-13-001. US Environmental Protection Agency, Washington

    Google Scholar 

  2. DOE (2011) U.S. Billion-Ton Update: biomass supply for a bioenergy and bioproducts industry. Perlack RD and Tokes BJ (Leads). ORNL/TM-2011/244. Oak Ridge National Laboratory. US Department of Energy, Oak Ridge

    Google Scholar 

  3. Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M, Nehra N (2009) Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell Dev Biol-Plant 45(6):619–629

    Article  PubMed Central  PubMed  Google Scholar 

  4. Vance E, Loehle C, Wigley B, Weatherford P (2014) Scientific basis for sustainable management of Eucalptus and Populus as short-rotation woody crops in the U.S. Forest 5:901–918

    Article  Google Scholar 

  5. Simpson J, Gordon A, Thevathasan N, Stanturf J, & Nicholas I (2009). Short rotation crops for bioenergy systems—environmental benefits associated with short-rotation woody crops, IEA Bioenergy Task 30: Rotorua, NZ

  6. Jacob S, Perez D, Dupont C, Commandre J, Broust F, Carriau A, Sacco D (2013) Short rotation forestry feedstock: influence of particle size segregation on biomass properties. Fuel 111:820–828

    Article  CAS  Google Scholar 

  7. Guidi W, Tozzini C, Bonari E (2009) Estimation of chemical traits in poplar short-rotation coppice at stand level. Biomass Bioenergy 33:1703–1709

    Article  CAS  Google Scholar 

  8. Perez D, Guillemain A, Berthelot A, N’guyen-the N, Morogues F, Gomes C (2010) Evaluation of forestry biomass quality for the production of second-generation biofuels. Cellul Chem Technol 44(1–3):1–14

    Google Scholar 

  9. Kumar R, Pandey K, Chandrashekar N, Mohan S (2010) Effect of tree-age on calorific value and other fuel properties of Eucalyptus hybrid. J For Res 21:514–516

    Article  CAS  Google Scholar 

  10. Fasina O, Littlefield B (2012) TG-FTIR analysis of pecan shells thermal decomposition. Fuel Process Technol 102:61–66

    Article  CAS  Google Scholar 

  11. Lee SB, Fasina O (2009) TG-FTIR analysis of switchgrass pyrolysis. J Anal Appl Pyrolysis 86:39–43

    Article  CAS  Google Scholar 

  12. Skreiberg A, Skreiberg O, Sandquist J, Sorum L (2011) TGA and macro-TGA characterization of biomass fuels and fuel mixtures. Fuel 90:2182–2197

    Article  CAS  Google Scholar 

  13. Bell L, Labuza T (2000) Moisture sorption: practical aspects of isotherm measurement and use, 2nd edn. American Association of Cereal Chemists, Inc., St. Paul

    Google Scholar 

  14. Karunanithy C, Muthukumarappan K, Donepudi A (2013) Moisture sorption characteristics of switchgrass and prairie cord grass. Fuel 103:171–178

    Article  CAS  Google Scholar 

  15. Colley Z, Fasina O, Bransby D, Lee Y (2006) Moisture effect on the physical characteristics of switchgrass pellets. Trans ASABE 49:1845–1851

    Article  Google Scholar 

  16. He X, Lau A, Sokhansanj S, Lim J, Bi X, Melin S, Keddy T (2013) Moisture sorption isotherms and drying characteristics of aspen (Populus tremuloides). Biomass Bioenergy 57:161–167

    Article  CAS  Google Scholar 

  17. Arabhosseini A, Huisman W, Muller J (2010) Modeling of the equilibrium moisture content (EMC) of miscanthus (Miscanthus x giganteus). Biomass Bioenergy 34:411–416

    Article  Google Scholar 

  18. Bonner I, Kenney K (2013) Moisture sorption behavior characteristics and modeling of energy sorghum (Sorghum bicolor L.) Moench). J Stored Prod Res 52:128–136

    Article  Google Scholar 

  19. Fasina O (2008) Physical properties of peanut hull pellets. Bioresour Technol 99:1259–1266

    Article  CAS  PubMed  Google Scholar 

  20. Karunanithy C, Muthukumarappan K, Donepudi A (2013) Moisture sorption characteristics of corn stover and big bluestem. J Renew Energy 2013:1–12

    Article  Google Scholar 

  21. Rockwood D, Rudie A, Ralph S, Zhu J, Winandy J (2008) Energy product options for eucalyptus species grown as short rotation woody crops. Int J Mol Sci 9:1361–1378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. ASTM (2007) Standard E1757. Standard practice for preparation of biomass for compositional analysis. American Society of Testing Materials, New York

    Google Scholar 

  23. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of ash in biomass by laboratory analytical procedure. National Renewable Energy Laboratory Report No NREL/TP-51-42622. Golden, CO. http://www.nrel.gov/biomass/analytical_procedures.html

  24. ISO (2010) Standard 562: hard coal and coke. Determination of Volatile Matter. International Standards Organization, Geneva, Switzerland

    Google Scholar 

  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass—laboratory analytical procedure. Report No NREL/TP-510-42618. NREL, Golden

    Google Scholar 

  26. ISO (2006) Standard 16993: solid biofuels—calculation of analyses to different bases. International Standards Organization, Geneva, Switzerland

    Google Scholar 

  27. ASTM (2008) Standard E1756. Standard test method for determination of total solids in biomass. American Society of Testing Materials, New York

    Google Scholar 

  28. Bernhart M, Fasina O (2009) Moisture effect on the storage, handling and flow properties of poultry litter. Waste Manag 29:1392–1398

    Article  CAS  PubMed  Google Scholar 

  29. SAS (2013) SAS user’s guide: statistics. Statistical Analysis System Inc., Cary

    Google Scholar 

  30. Senelwa K, Sims R (1999) Fuel characteristics of short rotation forest biomass. Biomass Bioenergy 17:127–140

    Article  Google Scholar 

  31. Littlefield B, Fasina O, Shaw J, Adhikari S, Via B (2011) Physical and flow properties of pecan shells—particle size and moisture effects. Powder Technol 212:173–180

    Article  CAS  Google Scholar 

  32. Probst K, Ambrose K, Pinto R, Bali R, Krishnakumar P, Ileleji K (2013) The effect of moisture content on the grinding performance of corn and corncobs by hammermilling. Trans ASABE 56:1025–1033

    Google Scholar 

  33. Teunou E, Fitzpartrick J, Synnott E (1999) Characterization of food powder flowability. J Food Eng 39:31–37

    Article  Google Scholar 

  34. Fayed M, Skocir T (1997) Mechanical conveyors: selection and operation. Technomic Publishing Company Inc., Lancaster

    Google Scholar 

  35. ASABE (2014) ANSI/ASABE S448.2 Standard: thin-layer drying of agricultural crops. ASABE, St. Joseph

    Google Scholar 

  36. Basunia M, Abe T (2005) Thin-layer re-wetting of rough rice at low and high temperatures. J Stored Prod Res 41:163–173

    Article  Google Scholar 

  37. Kashaninejad M, Dehghani A, Kashiri M (2009) Modeling of wheat soaking using two artificial neural netwrosk (MLP and RBF). J Food Eng 91:602–607

    Article  Google Scholar 

  38. Wilhelm L, Suter D, Brusewitz G (2004) Food and process engineering technology. ASABE, St. Joseph

    Book  Google Scholar 

  39. Mishchenko A, Yakimov N, Potashev K, Breus V, Breus I (2007) The equation of vapor-phase sorption on heterogeneous surfaces with local Guggenheim-Anderson-De Boer model. Colloids Surf A Physicochem Eng Asp 296:182–190

    Article  CAS  Google Scholar 

  40. Lam P, Sokhansanj S, Bi X, Lim J, Larsson S (2012) Drying characteristics and equilibrium moisture content of steam-treated Douglas fir (Pseudotsuga menziesii L.). Bioresour Technol 116:396–402

    Article  CAS  PubMed  Google Scholar 

  41. Mello L, Mali S (2014) Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Ind Crop Prod 55:187–193

    Article  CAS  Google Scholar 

  42. Cardoso J, Pena R (2014) Hygroscopic behavior of banana (Musa spp. AAA) flour in different ripening stages. Food Bioprod Process 92:73–79

    Article  CAS  Google Scholar 

  43. Goneli A, Comea P, Oliveira G, Afonso P (2013) Water sorption properties of coffee fruits, pulped and green coffee. LWT Food Sci Technol 50:386–391

    Article  CAS  Google Scholar 

  44. Quirijns E, van Boxtel A, van Loon W, van Straten G (2005) Sorption isotherms. GAB parameters and isosteric heat of sorption. J Sci Food Agric 85:1805–1814

    Article  CAS  Google Scholar 

  45. Moraga G, Martinex-Navarrete N, Chiralt A (2006) Water sorption isotherms and phase transitions in kiwifruit. J Food Eng 72:147–156

    Article  Google Scholar 

  46. Souza BS, Moreira AP, Teixeira AM (2009) TG–FTIR coupling to monitor the pyrolysis products from agricultural residues. J Therm Anal Calorim 87:638–642

    Google Scholar 

  47. Tsamba A, Yang W, Blasiak W (2006) Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Process Technol 87:523–530

    Article  CAS  Google Scholar 

  48. Meszaros E, Varhegyi G, Jakab E (2004) Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuel 18:497–507

    Article  CAS  Google Scholar 

  49. Idris SS, Rahman NA, Ismail K, Alias AB, Rashid ZA, Aris MJ (2010) Investigation on thermochemical behavior of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol 101:4584–4592

    Article  CAS  PubMed  Google Scholar 

  50. Pang C, Gaddipatti S, Tucker G, Lester E, Wu T (2014) Relationship between thermal behavior of lignocellulosic components and properties of biomass. Bioresour Technol 172:312–320

    Article  CAS  PubMed  Google Scholar 

  51. Zhou H, Long Y, Meng A, Li Q, Zhang Y (2013) The pyrolysis simulation of five biomass species by hemicellulose, cellulose and lignin based thermogravimetric curves. Thermochim Acta 566:36–43

    Article  CAS  Google Scholar 

  52. Jeguirim M, Bikai J, Elmay Y, Limousy L, Njeugna E (2014) Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy Sustain Dev 23:188–193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from USDA-NIFA Project: Southeast Partnership for Integrated Biomass Supply Systems (IBSS), NSF Research Experience for Undergraduates (REU) Project: Biofuels and Bioproducts from Lignocellulosic Biomass (Award No. 1149940), and Alabama Agriculture Experiment Station Hatch Funding.

Conflict of interest

We do not have conflict of interests regarding the conduct of this research.

Statement regarding ethical standards

The authors of this manuscript hereby declare to the BioEnergy Research Journal that we are in compliance with ethical standards with regard to the contents of the manuscript. We did not use humans or animals as test subjects while conducting the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oladiran Fasina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncalves, B., Till, D., Fasina, O. et al. Influence of Bark on the Physical and Thermal Decomposition Properties of Short-Rotation Eucalyptus . Bioenerg. Res. 8, 1414–1423 (2015). https://doi.org/10.1007/s12155-015-9606-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9606-1

Keywords

Navigation