Skip to main content
Log in

Comparative biocatalytic degradation of Kraft prehydrolysate phenolic fermentation inhibitors using bacteria-derived laccase

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Kraft prehydrolysate contains fermentable sugars and other organic compounds such as furans, phenolic compounds and acids, which are toxic to the fermentation microorganisms. In this work, bacteria-derived laccases were used to degrade key phenolic compounds. Firstly, the potential of degrading the key phenolic compounds in the prehydrolysate was determined. This was followed by tests with synthetic solutions to determine how specific phenolic compounds, vanillin, gallic acid, catechol and syringaldehyde, are degraded individually and in synergy. An evaluation of the simultaneous detoxification and enzymatic hydrolysis of the sugars was performed. The results showed that an enzyme dosage of at least 100 µL of laccase/g of phenol is required to obtain a significant detoxification of the prehydrolysate. Differences in the degradation of the compounds in single-component solutions and in a mixture were identified. Gallic acid and syringaldehyde are preferentially degraded, followed by vanillin and catechol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajao O, Le Hir M, Rahni M, Marinova M, Chadjaa H, Savadogo O (2015a) Concentration and detoxification of Kraft prehydrolysate by combining nanofiltration with flocculation. Ind Eng Chem Res 54:1113–1122

    Article  CAS  Google Scholar 

  • Ajao O, Rahni M, Marinova M, Chadjaa H, Savadogo O (2015b) Retention and flux characteristics of nanofiltration membranes during hemicellulose prehydrolysate concentration. Chem Eng J 260:605–615

    Article  CAS  Google Scholar 

  • Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases–occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  CAS  PubMed  Google Scholar 

  • Bourbonnais R, Paice M, Reid I, Lanthier P, Yaguchi M (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2, 2′-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61:1876–1880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury P, Hari R, Chakraborty B, Mandal B, Naskar S, Das N (2014) Isolation, culture optimization and physico-chemical characterization of laccase enzyme from Pleurotus fossulatus. Pak J Biol Sci 17:173–181

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Li H, Jiang Y, Hu M, Li S, Zhai Q (2016) Rapid and efficient degradation of bisphenol A by chloroperoxidase from Caldariomyces fumago: product analysis and ecotoxicity evaluation of the degraded solution. Biotechnol Lett. doi:10.1007/s10529-016-2137-9:1-9

    Google Scholar 

  • Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B 28:83–99

    Article  Google Scholar 

  • El-Naas MH, Al-Muhtaseb SA, Makhlouf S (2009) Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Hazard Mater 164:720–725

    Article  CAS  PubMed  Google Scholar 

  • Hildén K, Mäkelä MR, Lankinen P, Lundell T (2013) Agaricus bisporus and related Agaricus species on lignocellulose: production of manganese peroxidase and multicopper oxidases. Fungal Genet Biol 55:32–41

    Article  PubMed  Google Scholar 

  • Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697

    Article  Google Scholar 

  • Jurado M, Prieto A, Martínez-Alcalá Á, Martínez ÁT, Martínez MJ (2009) Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol 100:6378–6384

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lee S, Ryu S, Choi H (2012) Decolorization of Remazol Brilliant Blue R by a Purified Laccase of Polyporus brumalis. Appl Biochem Biotechnol 166:159–164

    Article  CAS  PubMed  Google Scholar 

  • Kolb M, Sieber V, Amann M, Faulstich M, Schieder D (2012) Removal of monomer delignification products by laccase from Trametes versicolor. Bioresour Technol 104:298–304

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kumar S, Kumar S (2005) Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochem Eng J 22:151–159

    Article  CAS  Google Scholar 

  • Lahtinen M, Heinonen P, Oivanen M, Karhunen P, Kruus K, Sipila J (2013) On the factors affecting product distribution in laccase-catalyzed oxidation of a lignin model compound vanillyl alcohol: experimental and computational evaluation. Org Biomol Chem 11:5454–5464

    Article  CAS  PubMed  Google Scholar 

  • Martín C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising saccharomyces cerevisiae. Enzym Microb Technol 31:274–282

    Article  Google Scholar 

  • Miland E, Smyth MR, Fágáin CÓ (1996) Phenol removal by modified peroxidases. J Chem Technol Biotechnol 67:227–236

    Article  CAS  Google Scholar 

  • Nousiainen P, Kontro J, Manner H, Hatakka A, Sipilä J (2014) Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genet Biol 72:137–149

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Martínez ÁT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb biotechnol 2:164–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Sainsbury PD, Mineyeva Y, Mycroft Z, Bugg TDH (2015) Chemical intervention in bacterial lignin degradation pathways: development of selective inhibitors for intradiol and extradiol catechol dioxygenases. Bioorg Chem 60:102–109

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Qingxiang Z, Hui H, Qin L, Yi Z (1997) Removal of toxic phenol and 4-chlorophenol from waste water by horseradish peroxidase. Chemosphere 34:893–903

    Article  CAS  Google Scholar 

  • Yadav M, Yadav HS (2015) Applications of ligninolytic enzymes to pollutants, wastewater, dyes, soil, coal, paper and polymers. Environ Chem Lett 13:309–318

    Article  CAS  Google Scholar 

  • Zheng M (2012) Conception et développement d’une cathode utilisant la laccase de Trametes versicolor (Design and development of Trametes versicolor laccase based cathode). Université Pierre et Marie Curie-Paris VI (in French)

  • Zibek S, Rupp S, Hirth T, Amann M, Ludwig D (2010) Laccase‐katalysierte Detoxifizierung von löslichen Ligninabbauprodukten in vorbehandelten Lignocellulose‐Hydrolysaten (Laccase catalyzed detoxification of soluble lignin degradation products in pretreated lignocellulosic hydrolysate). Chem Ing Tech 82:1183–1189 (in German)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to MetGen Oy, Finland, for providing the laccase and FP Innovations for providing the hemicelluloses prehydrolysate. This work was supported by a grant from the College-University I2I Program of the Natural Sciences and Engineering Research Council of Canada (Grant Number 437803–12) and BioFuelNet Canada. The assistance of technicians at CNETE during the experimental work is appreciated. The authors are indebted to Prof. Jean Paris for his valuable contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olumoye Ajao or Mariya Marinova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajao, O., Le Hir, M., Rahni, M. et al. Comparative biocatalytic degradation of Kraft prehydrolysate phenolic fermentation inhibitors using bacteria-derived laccase. Wood Sci Technol 51, 585–599 (2017). https://doi.org/10.1007/s00226-016-0879-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-016-0879-0

Keywords

Navigation