Skip to main content
Log in

Spatial correlation of tensile perpendicular to grain properties in Norway spruce timber

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Tensile strength perpendicular to grain constitutes one of the most vulnerable properties of timber. Due to versatile influencing parameters this property exhibits a high amount of uncertainty. Thus, progress in modeling, in particular by considering stochastics, is seen as worthwhile. This increases the reliability estimates of timber constructions but also their economic efficiency. Test data of tensile properties determined on consecutive board segments of Norway spruce are analyzed. The data consists of four subgroups, classified in regard to segment length and radial position within the log. The correlation in longitudinal direction of perpendicular to grain tensile strength and elastic modulus as well as of density is examined. This is done depending on the radial position of structural timber within the log. A second-order hierarchical model together with equicorrelation is used. The results outline the applicability of the model and allow the quantification of equicorrelation coefficients of all three properties. The outcome provides a valuable and necessary input for state-of-the-art mechanics-stochastic modeling of the resistance perpendicular to grain tensile strength and elastic modulus of unjointed and jointed structural timber, but in particular of products available in large dimensions, like glued and cross-laminated timber. Additionally, the spatial correlation of density is discussed which is seen as worthwhile for the estimation of group action of fasteners. The necessity to differentiate between the variability within and between segments of structural timber is clearly demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barrett JD, Foschi RO, Fox SP (1975) Perpendicular-to-the-grain strength of Douglas-fir. Can J Civil Eng 2:50–57

    Article  Google Scholar 

  • Blaß HJ, Schmid M (1999) Ermittlung der Querzugfestigkeit von Voll- und Brettschichtholz. Bauforschung, Fraunhofer IRB Verlag, T 2844, ISBN 3-8167-5473-2

  • Blaß HJ, Schmid M (2001) Querzugfestigkeit von Vollholz und Brettschichtholz (Tensile strength of timber perpendicular to grain). Holz Roh- Werkst 58:456–466

    Article  Google Scholar 

  • Bohannan B (1966) Effect of size on bending strength of wood members. Forest Products Laboratory, Forest Service, US Department of Agriculture, Madison, WI, RP-FPL 56, p 30

  • Brandner R (2012) Stochastic system actions and effects in engineered timber products and structures. Dissertation, Institute of Timber Engineering and Wood Technology, Graz University of Technology, p 467

  • Brandner R, Frühwald K, Unterwieser H, Jeitler G (2005) P05 grading—Gurtlamellen: Prüfbericht. Report, Competence Centre holz.bau forschungs gmbh, Graz, Austria, p 26 (in German)

  • Colling F (1990) Tragfähigkeit von Biegeträgern aus Brettschichtholz in Abhängigkeit von den festigkeitsrelevanten Einflußgrößen. Dissertation, Versuchsanstalt für Stahl, Holz und Steine, Universität Fridericiana in Karlsruhe, Germany (in German)

  • Daniels HE (1945) The statistical theory of the strength of bundles of threads. I. Proc R Soc A 183:405–435

    Article  Google Scholar 

  • Dill-Langer G (2004) Schädigung von Brettschichtholz bei Zugbeanspruchung rechtwinklig zur Faserrichtung. Dissertation, Materialprüfungsanstalt, Institut für Werkstoffe im Bauwesen, Universität Stuttgart (in German)

  • Ditlevsen O, Källsner B (1998) System effects influencing the bending strength of timber beams. Working Conference on Reliability and Optimization of Structural Systems, IFIP 8th WG 7.5, Krakow, Poland, p 8

  • Ditlevsen O, Källsner B (2005) Span-dependent distributions of the bending strength of spruce timber. J Eng Mech ASCE 131(5):485–499

    Article  Google Scholar 

  • Ehlbeck J, Kürth J (1994) Ermittlung der Querzugfestigkeit von Voll- und Brettschichtholz—Entwicklung eines Prüfverfahrens. Report, Versuchsanstalt für Stahl, Holz und Steine, Abteilung Ingenieurholzbau, Universität Karlsruhe (in German)

  • EN 14081-4 (2009) Timber structures—strength graded structural timber with rectangular cross section—Part 4: Machine grading—grading machine settings for machine controlled systems

  • EN 408 (2009) Timber structures—structural timber and glued laminated timber—determination of some physical and mechanical properties

  • Harlow DG, Smith RL, Taylor HM (1983) Lower tail analysis of the distribution of the strength of load-sharing systems. J Appl Probab 20(2):358–367

    Article  Google Scholar 

  • Hoffmeyer P (1987) The role of grain angle, knots, tension wood, compression wood, and other anomalies on the mechanical properties of wood. Technical Report, No. 183/87, Technical University of Denmark, Building Material Laboratory

  • Ibnabdeljalil M, Curtin WA (1997) Strength and reliability of fibre-reinforced composites: localized load-sharing and associated size effects. Int J Solids Struct 34(21):2649–2668

    Article  Google Scholar 

  • Isaksson T (1999) Modeling the variability of bending strength in structural timber. Dissertation, Lund, Sweden, Report TVBK-1015, ISSN 0349-4969

  • Joint Committee on Structural Safety JCSS (2006) Probabilistic model code—Part III resistance models—timber. www.jcss.byg.dtu.dk, p 16

  • Källsner B, Ditlevsen O, Salmela K (1997) Experimental verification of a weak zone model for timber in bending. IUFRO S 5.02—Timber Engineering, Copenhagen, Denmark, p 17

  • Köhler J (2007) Reliability of Timber Structures. Dissertation, ETH Zurich, Institut für Baustatik und Konstruktion, Switzerland, IBK-Bericht Nr. 301

  • Lam F, Wang Y-T, Barrett JD (1994) Simulation of correlated nonstationary lumber properties. J Mater Civil Eng 6(1):34–53

    Article  Google Scholar 

  • Lawley DN (1963) On testing a set of correlation coefficients for equality. Ann Math Stat 34(1):149–151

    Article  Google Scholar 

  • Leicester R H (1985) Configuration factors for the bending strength of timber. CIB-W18, 18th Meeting, Beit Oren, Israel, 18-6-2

  • Madsen B (1989) Size effects in lumber. Are they important? 2nd Pacific Timber Engineering Conference, Auckland, New Zealand, p 28–31

  • Madsen B (1992) Structural behaviour of timber. Timber Engineering Ltd., Vancouver

    Google Scholar 

  • Mistler H L (1979) Die Tragfähigkeit des am Endauflagers unten rechtwinkelig ausgeklinkten Brettschichtträgers. Dissertation, Lehrstuhl für Ingenieurholzbau und Baukonstruktionen, Technische Hochschule Karlsruhe (in German)

  • Phoenix SL, Ibnabdeljalil M, Hui CY (1997) Size effects in the distribution for strength of brittle matrix fibrous composites. Int J Solids Struct 34(5):545–568

    Article  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0

    Google Scholar 

  • Riberholt H, Madsen P H (1979) Strength distribution of timber structures—measured variation of the cross sectional strength of structural lumber. Structural Research Laboratory, Technical University of Denmark, No. R 114

  • Richburg BA, Bender DA (1992) Localized tensile strength and modulus of elasticity of E-rated laminated grades of lumber. Wood Fiber Sci 24(2):225–232

    Google Scholar 

  • Showalter KL (1986) The effect of length on tensile strength parallel-to-grain in structural lumber. Virginia Polytechnic Institute and State University, Blacksbury, VA, Master thesis

    Google Scholar 

  • Smith RL (1982) The asymptotic distribution of the strength of a series-parallel system with equal load-sharing. Ann Probab 10(1):137–171

    Article  Google Scholar 

  • Stich T (1998) Bending strength of structural timber with respect to the interaction between weak zones. L-report 9806038, Swedish Institute for Wood Technology Research, Stockholm, Sweden (in German)

  • Stuefer A (2011) Einflussparameter auf die Querzugfestigkeit von BSH-Lamellen. Diploma thesis, Institute of Timber Engineering and Wood Technology, Graz University of Technology, p 148 (in German)

  • Sutherland LS, Shenoi RA, Lewis SM (1999) Size and scale effects in composites: I literature review. Compos Sci Technol 59:209–220

    Article  CAS  Google Scholar 

  • Taylor SE (1988) Modeling spatial variability of localized lumber properties. Dissertation, Texas A&M University of Florida, p 283

  • Taylor SE, Bender DA (1991) Stochastic model for localized tensile strength and modulus of elasticity in lumber. Wood Fiber Sci 23(4):501–519

    Google Scholar 

  • Toratti T (1992) Creep of timber beams in a variable environment. Dissertation, Helsinki University of Technology, Helsinki, Finland

  • Wagenführ R (2006) Holzatlas. Carl Hanser Verlag GmbH & CO. KG, 6., neu bearbeitete und erweiterte Auflage, ISBN 978-3446406490 (in German)

  • Wallner B (2012) Versuchstechnische Evaluierung feuchteinduzierter Kräfte in Brettschichtholz verursacht durch das Einbringen von Schraubstangen. Master thesis, Institute of Timber Engineering and Wood Technology, Graz University of Technology, p 173 (in German)

  • Weibull W (1939a) A statistical theory of the strength of materials. IVA, Handling Nr. 151, Royal Swedish Institute for Engineering Research

  • Weibull W (1939b) The phenomenon of rupture in solids. IVA, Handling Nr. 153, Royal Swedish Institute for Engineering Research

  • Williamson JA (1994) Statistical dependence of timber strength. IUFRO—Timber Engineering, S 5.02, Sydney, Australia, p 353–363

  • Williamson JA (1992) Statistical models for the effect of length on the strength of lumber. Dissertation, Department of Civil Engineering, University of British Columbia, p 270

  • Zweben C, Rosen BW (1970) A statistical theory of material strength with application to composite materials. J Mech Phys Solids 18:189–206

    Article  Google Scholar 

Download references

Acknowledgments

The research work was conducted at the Institute of Timber Engineering and Wood Technology at the Graz University of Technology. The research project delivering the data set was performed in collaboration with the Competence Centre holz.bau forschungs gmbh as part of the research project IICS 1.2.4-2 reinforce_connection_tension-perpendicular within the frame of the COMET K-project timber.engineering and partners from industry involved in the project. The research work was fostered through the funds of the Federal Ministry of Economics and Labour, the Federal Ministry of Transport, Innovation and Technology of Austria, the Styrian Business Promotion Agency Association and the province of Styria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brandner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandner, R., Schickhofer, G. Spatial correlation of tensile perpendicular to grain properties in Norway spruce timber. Wood Sci Technol 48, 337–352 (2014). https://doi.org/10.1007/s00226-013-0606-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-013-0606-z

Keywords

Navigation