Skip to main content
Log in

Probabilistic models for the modulus of elasticity and shear in serial and parallel acting timber elements

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Elastic properties, like modulus of elasticity and shear, are basic design parameters. Besides calculation of deformations in serviceability limit state design, these properties are also applied to ultimate limit state design, considering stability analysis of columns and girders and the calculation of internal forces in statically indeterminate structures. However, analytical probabilistic models explicitly considering the stochastics of elastic properties in timber design and product modelling are scarce or even missing. Focus was put on elastic properties of structural timber and timber products, composed of face-by-face rigidly and continuously bonded timber members. Considering timber members as rigid composites of sub-elements in series and timber products as rigid composites of timber members as serial system of parallel sub-elements, probabilistic models for parallel and serial acting elements are obtained assuming linear elastic theory and lognormal distribution. Motivated by the material structure, a two-level hierarchical model was modelled explicitly considering within- and between-element variation and correlation. Parameter settings were defined for three timber qualities. The authors (1) investigated structural timber and timber products with and without finger joints and quantified the homogenization in dependence on input parameters, i.e. the coefficient of variation and the number of serial and/or parallel interacting elements and sub-elements, (2) compared the outcome with current regulations in European standards, e.g. EN 338:2009 and EN 14080:2013 and JCSS:2006, and (3) gave recommendations for revisions. Although not explicitly demonstrated, the probabilistic models have additional potential in calculating the stiffness of joints consisting of multiple fasteners, as well as of joint stiffness in flexible composites, e.g. mechanically jointed beams where the stiffness parameters are later used in shear analogy or γ-method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CLT:

Cross-laminated timber

CV[X]:

Coefficient of variation of random variable X

CoVar[X]:

Covariance of random variable X

d :

Depth

d WZ :

Distance between weak zones

E c :

Elastic modulus in compression

E m :

Elastic modulus in bending

E t :

Elastic modulus in tension

E[X]:

Expectation of random variable X

E 0 :

Elastic modulus parallel to grain

E 90 :

Elastic modulus perpendicular to grain

f c,0 :

Compression strength parallel to grain

FJ:

Finger joint

f m :

Bending strength

F X (x):

Distribution function of random variable X

GLT:

Glued laminated timber (glulam)

G 090 :

Longitudinal shear modulus

G 9090 :

Transverse (rolling) shear modulus

iid:

Independently and identically distributed

I tor :

Torsion moment of inertia

I z :

Moment of inertia in z-direction

HQ:

High quality

k crit :

Factor for lateral (torsional) buckling

k c,y ; k c,z :

Instability factor in y-/z-direction

k sys :

System factor

l ef :

Effective length

l ref :

Reference length

LQ:

Low quality

LVL:

Laminated veneer lumber

M :

Number of serial acting elements

m :

Number of finger joints per reference length

MG:

Machine graded

MQ:

Medium quality

M y,crit :

Critical bending moment

N :

Number of parallel acting elements

ND:

Normal distribution

RSDM:

Representative statistical distribution model

SLS:

Serviceability limit state

t :

Thickness

ULS:

Ultimate limit state

Var[X]:

Variance of random variable X

VG:

Visual graded

W y :

Section modulus in y-direction

X j |k :

Two-level hierarchical model: jth iid deviation of sub-element j from Y k given element k

X d :

Design value of random variable X

X g :

Property of random variable X for glulam

X k :

Characteristic value of random variable X

X l :

Property of random variable X for lamellas (boards)

X mean :

Mean value of random variable X

X 05 :

5 %-Quantile of random variable X

X 1 :

Property of random variable X for a single element

X N :

Property of random variable X for N parallel acting elements

X M :

Property of random variable X for M serial acting elements

Y k :

Two-level hierarchical model: mean value of the analysed property of the kth element

Z jk :

Two-level hierarchical model: property of sub-element j given element k

λ y ; λ z :

Geometric slenderness in y-/z-direction

λ rel :

Relative slenderness

μ X :

Expectation of random variable X

ρ :

Pearson correlation coefficient

ρ equi :

Equicorrelation coefficient

σ X :

Standard deviation of random variable X

σ c,0 :

Compression stress parallel to grain

σ m; σ m,crit :

(Critical) bending stress

2pLND:

Two-parametric lognormal distribution

References

General publications and papers

  • Bakht B, Jaeger LG (1991) Load sharing in timber bridge design. Can J Civ Eng 18:312–319

    Article  Google Scholar 

  • Barakat R (1976) Sums of independent lognormally distributed random variables. J Opt Soc Am 66(3):211–216

    Article  Google Scholar 

  • Blaß HJ (2005) Ermittlung des 5%-Quantils des Produkts aus Elastizitätsmodul und Torsionsschubmodul für Brettschichtholz [Determination of the 5%-quantile of the product of modulus of elasticity and torsion for glued laminated timber]. Internal Report in frame of the revision of EN 14080, 11 pp (in German)

  • Bohnhoff DR (1995) Mechanically laminated post engineering practice. FBN 7(5):36–39

  • Brandner R, Frühwald K, Unterwieser H, Jeitler G (2005) P05 grading—Gurtlamellen: Prüfbericht [P05 grading—flange lamellas: test report]. Report, holz.bau forschungs gmbh, Graz, Austria, 26 pp (in German)

  • Brandner R, Schickhofer G (2006) System effects of structural elements: determined for bending and tension. In: 9th world conference on Timber Engineering (WCTE), Portland, Oregon, 8 pp

  • Brandner R, Schickhofer G (2007) Mechanical potential of boards of spruce for glulam production. Internal research report, holz.bau forschungs gmbh, Graz, Austria, 34 pp

  • Brandner R, Gehri E, Bogensperger T, Schickhofer G (2007) Determination of modulus of shear and elasticity of glued laminated timber and related examinations. In: 40th meeting of the international council for research and innovation in building construction: working commission W18—timber structures, CIB-W18/40-12-2, Bled, Slovenia

  • Brandner R, Freytag B, Schickhofer G (2008) Determination of shear modulus by means of standardized four-point bending tests. In: 41st meeting of the international council for research and innovation in building construction: working commission W18—timber structures, CIB-W18/41-21-1, St. Andrews, Canada

  • Brandner R, Schickhofer G (2010) Glued laminated timber: thoughts, experiments, models and verification. In: World conference on Timber Engineering (WCTE), Riva del Garda, Italy, 11 pp

  • Brandner R, Stadlober E, Schickhofer G (2012a) MMSM 2.2.1 stoch_mod: Stochastische Beschreibung von Brettware der Holzart Fichte auf Zug parallel zur Faser – Statistische Aus- und Bewertung der Daten aus dem Projekt INTELLIWOOD (2000–2001) [MMSM 2.2.1 stoch_mod: stochastic description of board material from Norway spruce loaded in tension parallel to grain—statistical analysis and evaluation of data from project INTELLIWOOD (2000–2001)]. Research report, Institute of Timber Engineering and Wood Technology, Graz University of Technology, holz.bau forschungs gmbh, Graz, Austria, 1420 pp (in German)

  • Brandner R, Gatternig W, Schickhofer G (2012b) Determination of shear strength of structural and glued laminated timber. In: 45th meeting of the international council for research and innovation in building construction: working commission W18—timber structures, CIB-W18/45-12-2, Växjö, Sweden

  • Brandner R (2013) Stochastic system actions and effects in engineered timber products and structures. In: Schickhofer G, Brandner R (eds) Timber engineering and technology (TET), vol 2. Monographic series TU Graz. Verlag der Technischen Universität Graz, ISBN 978-3-85125-263-7

  • Brandner R, Schickhofer G (2014) Spatial correlation of tensile perpendicular to grain properties in Norway spruce timber. Wood Sci Technol 48(2):337–352

    Article  CAS  Google Scholar 

  • Casella G, Berger RL (2002) Statistical inference, 2nd ed. Library of Congress Cataloging-in Publication Data. ISBN 0-534-24312-6

  • Czmoch I (1991) Lengthwise variability of bending stiffness of timber beams. International Timber Engineering Conference, London, UK, 2.158–2.165

  • Daniels HE (1945) The statistical theory of the strength of bundles of threads. Proc R Soc A 183:405–435

    Article  Google Scholar 

  • Ditlevsen O, Källsner B (1998) System effects influencing the bending strength of timber beams. In: Working conference on reliability and optimization of structural systems, IFIP 8th WG 7.5, Krakow, Poland, p 8

  • Eiser A (2008) Untersuchung von DUO- und TRIO-Trägern sowie des Grundmaterials als BSH-Ersatz für Schottland [Examination of DUO- and TRIO-beams as well as of the base material as substitute for glulam in Scottland]. Internal research report, holz.bau forschungs gmbh, Graz, Austria, 47 pp (in German)

  • Gibrat R (1930) Une loi des répartitions économiques: l’effet proportionnell [A law of economic distributions: the effect of proportion]. Bulletin de la Statistique Générale de la France 19:469–513

    Google Scholar 

  • Gibrat R (1931) Les inégalités économiques; applications: aux inégalités des richesses, à la concentration des entreprises, aux populations des villes, aux statistiques des familles, etc., d’une loi novella, la loi de l’effet proportionnel [Economic inequalities; applications: inequalities of wealth, corporate concentration, populations of cities, statistics of families, etc., a new law, the law of proportional effect]. Paris, Librairie du Recueil Sirey

  • Görlacher R, Kürth J (1994) Determination of shear modulus. In: 27th meeting of the international council for research and innovation in building construction: working commission W18—timber structures, CIB-W18/27-10-1, Sydney, Australia

  • Harlow DG, Smith RL, Taylor HM (1983) Lower tail analysis of the distribution of the strength of load-sharing systems. J Appl Probab 20(2):358–367

    Article  Google Scholar 

  • Hidalgo RC, Moremo Y, Kun F, Herrmann HJ (2002) Fracture model with variable range of interaction. Phys Rev E 65(046148):1–8

    Google Scholar 

  • Hoffmeyer P (1978) Moisture content—strength relationship for spruce lumber subjected to bending, compression and tension along the grain. IUFRO—Timber Engineering, Vancouver, Canada, pp 71–91

  • Isaksson T (1998) Length and moment configuration factors. In: 31st meeting of the international council for research and innovation in building construction: working commission W18—timber structures, CIB-W18/31-6-1, Savonlinna, Finland

  • Isaksson T (1999) Modelling the variability of bending strength in structural timber. Dissertation, Lund, Sweden, Report TVBK-1015, ISSN 0349-4969

  • Jensen JL, Thomas SD, Corbett PWM (1997) On the bias sampling variation of the harmonic average. Math Geol 29(2):267–276

    Article  Google Scholar 

  • Källsner B, Ditlevsen O (1994) Lengthwise bending strength variation of structural timber. IUFRO—Timber Engineering, S 5.02, Sydney, Australia, pp 333–352

  • Källsner B, Ditlevsen O, Salmela K (1997) Experimental verification of a weak zone model for timber in bending. IUFRO S 5.02—Timber Engineering, Copenhagen, Denmark, 17 pp

  • Kline DE, Woeste FE, Bendtsen BA (1986) Stochastic model for modulus of elasticity of lumber. Wood Fiber Sci 18(2):228–238

    Google Scholar 

  • Köhler J (2007) Reliability of timber structures. Dissertation, ETH Zurich, Institut für Baustatik und Konstruktion, Switzerland, IBK-Bericht Nr. 301

  • Kohler J, Brandner R, Thiel AB, Schickhofer G (2013) Probabilistic characterisation of the length effect for parallel to the grain tensile strength of Central European spruce. Eng Struct 56:691–697

    Article  Google Scholar 

  • Lam F, Varoglu E (1991a) Variation of tensile strength along the length of lumber. Part 1: experimental. Wood Sci Technol 25:351–359

    Article  Google Scholar 

  • Lam F, Varoglu E (1991b) Variation of tensile strength along the length of lumber. Part 2: model development and verification. Wood Sci Technol 25:449–458

    Article  Google Scholar 

  • Lam F, Wang YT, Barrett JD (1994) Simulation of correlated nonstationary lumber properties. J Mater Civ Eng 6(1):34–53

    Article  Google Scholar 

  • Leicester RH (1985) Configuration factors for the bending strength of timber. In: 18th meeting of the international council for research and innovation in building construction: working commission W18—Timber Structures, CIB-W18/18-6-2, Beit Oren, Israel

  • Limbrunner JF, Vogel RM, Brown LC (2000) Estimation of harmonic mean of a lognormal variable. J Hydrol Eng 5(1):59–66

    Article  Google Scholar 

  • Michelitsch MK (2011) Statistische Prüfauswertung von Fichtenholz auf Längsdruck [Statistical data analysis of Norway spruce loaded in compression parallel to grain]. Master Project, Institute of Timber Engineering and Wood Technology, Graz University of Technology, 29 pp (in German)

  • Phoenix SL, Ibnabdeljalil M, Hui CY (1997) Size effects in the distribution for strength of brittle matrix fibrous composites. Int J Solids Struct 34(5):545–568

    Article  Google Scholar 

  • Rauter S, Bogensperger T (2008) Betrachtung eines verklebten Trägerstoßes—Modellvergleich und experimentelle Überprüfung [Examination of a glued joint between girders—model comparison and experimental verification]. In: 7. Grazer Holzbau-Fachtagung (7.GraHFT’08), Graz, Austria, 23 pp (in German)

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. http://www.R-project.org/

  • Riberholt H, Madsen PH (1979) Strength distribution of timber structures—measured variation of the cross sectional strength of structural lumber. Structural Research Laboratory, Technical University of Denmark, no. R 114

  • Riberholt H (2008) Nordic glulam—mechanical properties: final draft 2008-09-02. SP Technical Research Institute of Sweden, Building Technology and Mechanics, SP Report 2008:32, Version 2-A, ISBN 978-91-85829-49-1, 40 pp

  • Richburg BA (1989) Modelling localized properties of E-rated laminating lumber. Dissertation, Texas A&M University of Florida, 184 pp

  • Richburg BA, Bender DA (1992) Localized tensile strength and modulus of elasticity of E-rated laminated grades of lumber. Wood Fiber Sci 24(2):225–232

    Google Scholar 

  • Schickhofer G, Pischl R, Seiner C, Steinberger A, Gehri E, Mauritz R (1995) Development of efficient glued-laminated timber with the application of mechanical stress-graded timber. Summary, FFF-Research Project, Graz-Zurich-Vienna, 36 pp

  • Schickhofer G, Riebenbauer J (1997) Expertenpaket Brettschichtholz basierend auf Leistungsniveau und EU-Standard als Grundlage für die Schaffung neuer Märkte [Profession package glued laminated timber based on proviniency level and EU-standards as foundation for the exploration of new markets]. Final Report, FFG-Project 6/872, Lignum Research, 21 pp (in German)

  • Sexsmith RG, Boyle PD, Rovner B, Abbott RA (1979) Load sharing in vertically laminated, post-tensioned bridge decking. Technical report no. 6. Forintek Canada Corporation, Western Forest Products Laboratory, Vancouver, British Columbia, ISSN 0708-6172, 18 pp

  • Showalter KL (1986) The effect of length on tensile strength parallel-to-grain in structural lumber. Master Thesis, Virginia Polytechnic Institute and State University, Blacksbury, VA

  • Showalter KL, Woeste FE, Bendtsen BA (1987) Effect of length on tensile strength in structural lumber. United States Department of Agriculture, Forest Products Laboratory, Madison, WI, FPL-RP-482, 9 pp

  • Smith RL (1983) Limit theorems and approximations for the reliability of load-sharing systems. Adv Appl Probab 15(2):304–330

    Article  Google Scholar 

  • Steffen A, Johansson CJ, Wormuth EW (1997) Study of the relationship between flatwise and edgewise moduli of elasticity of sawn timber as a means to improve mechanical strength grading technology. Holz Roh- Werkst 55(2–4):245–253

    Article  Google Scholar 

  • Steiger R (1996) Mechanische Eigenschaften von Schweizer Fichten-Bauholz bei Biege-, Zug-, Druck und kombinierter M/N-Beanspruchung: Sortierung von Rund- und Schnittholz mittels Ultraschall [Mechanical properties of Swiss Norway spruce timber in bending, tension, compression and combined moment and normal force interaction: grading of roundwood and timber by means of ultrasonic measurement device]. Dissertation, Institut für Baustatik und Konstruktion (IBK), ETH Zurich, 182 pp (in German)

  • Stich T (1998) Bending strength of structural timber with respect to the interaction between weak zones. L-report 9806038, Swedish Institute for Wood Technology Research, Stockholm, Sweden

  • Stuefer A (2011) Einflussparameter auf die Querzugfestigkeit von BSH-Lamellen [Influencing parameters on the tension perpendicular to grain strength of glulam lamellas]. Diploma Thesis, Institute of Timber Engineering and Wood Technology, Graz University of Technology, 141 pp (in German)

  • Sutherland LS, Shenoi RA, Lewis SM (1999) Size and scale effects in composites: I. Literature review. Compos Sci Technol 59:209–220

    Article  CAS  Google Scholar 

  • Taylor SE (1988) Modelling spatial variability of localized lumber properties. Dissertation, Texas A&M University of Florida, 283 pp

  • Taylor SE, Bender DA (1988) Simulating correlated lumber properties using a modified multivariate normal approach. Am Soc Agric Eng Trans ASAE 31(1):182–186

    Article  Google Scholar 

  • Taylor SE, Bender DA (1989) A method for simulating multiple correlated lumber properties. Forest Prod J 39(7/8):71–74

    Google Scholar 

  • Taylor SE, Bender DA (1991) Stochastic model for localized tensile strength and modulus of elasticity in lumber. Wood Fiber Sci 23(4):501–519

    Google Scholar 

  • Wang YT, Lam F, Barrett JD (1995) Simulation of correlated modulus of elasticity and compressive strength of lumber with gain factor. Probab Eng Mech 10:63–71

    Article  Google Scholar 

  • Xiong P (1991) Modelling strength and stiffness of glued-laminated timber using machine stress rated lumber. Master Thesis, Faculty of Graduate Studies, Department of Forestry, University of British Columbia, 200 pp

  • Zweben C, Rosen BW (1970) A statistical theory of material strength with application to composite materials. J Mech Phys Solids 18:189–206

    Article  Google Scholar 

Standards

  • EN 338:2009 Structural timber – Strength classes. European Committee for Standardization (CEN)

  • EN 408:2012 Timber structures – Structural timber and glued laminated timber – Determination of some physical and mechanical properties. European Committee for Standardization (CEN)

  • EN 1194:1999 Timber structures – Glued laminated timber – Strength classes and determination of characteristic values. European Committee for Standardization (CEN)

  • EN 1995-1-1:2006 Eurocode 5: Design of timber structures – Part 1-1: General – Common rules and rules for buildings. European Committee for Standardization (CEN)

  • EN 1995-2:2006 Eurocode 5: Design of timber structures – Part 2: Bridges. European Committee for Standardization (CEN)

  • EN 14080:2013 Timber structures – Glued laminated timber and glued solid timber – Requirements. European Committee for Standardization (CEN)

  • JCSS:2006 Joint Probabilistic Model Code. Part 3.05: Resistance Models: Timber. Joint Committee on Structural Safety

Download references

Acknowledgments

The research work was conducted at the Institute of Timber Engineering and Wood Technology at the Graz University of Technology in the course of the dissertation published in Brandner (2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brandner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandner, R., Schickhofer, G. Probabilistic models for the modulus of elasticity and shear in serial and parallel acting timber elements. Wood Sci Technol 49, 121–146 (2015). https://doi.org/10.1007/s00226-014-0689-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-014-0689-1

Keywords

Navigation