Skip to main content
Log in

Normality and Finite-State Dimension of Liouville Numbers

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Liouville numbers were the first class of real numbers which were proven to be transcendental. It is easy to construct non-normal Liouville numbers. Kano (1993) and Bugeaud (2002) have proved, using analytic techniques, that there are normal Liouville numbers. Here, for a given base k ≥ 2, we give a new construction of a Liouville number which is normal to the base k. This construction is combinatorial, and is based on de Bruijn sequences.

A real number in the unit interval is normal if and only if its finite-state dimension is 1. We generalize our construction to prove that for any rational r in the closed unit interval, there is a Liouville number with finite state dimension r. This refines Staiger’s result [19] that the set of Liouville numbers has constructive Hausdorff dimension zero, showing a new quantitative classification of Liouville numbers can be attained using finite-state dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There are several historical forerunners of this concept in places as varied as Sanskrit prosody and poetics. However, the general construction for all bases and all orders is not known to be ancient.

  2. For the string \(x_{0} x_{1} {\dots } x_{k^{n}-1}\), we also consider subpatterns \(x_{k^{n}-n+1} {\dots } x_{k^{n}-1} x_{0}\), \(x_{k^{n}-n+2} {\dots } x_{k^{n}-1} x_{0}x_{1}\), and so on until \(x_{k^{n}-1} x_{0} {\dots } x_{n-2}\), obtained by “wrapping around the string”.

  3. not necessarily in the lowest form

References

  1. Bachan, M.: Finite State Dimension of the Kolakoski Sequence. Iowa State University, Ames, U.S.A. (2005). Master’s thesis

  2. Becher, V., Heiber, P.A., Slaman, T.A.: A computable absolutely normal liouville number. http://math.berkeley.edu/slaman/papers/liouville.pdf

  3. Borel, É.: Sur les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo 27, 247–271 (1909)

    Article  MATH  Google Scholar 

  4. Bourke, C., Hitchcock, J.M., Vinodchandran, N.V.: Entropy rates and finite-state compression. Theor. Comput. Sci. 349, 392–406 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bugeaud, Y.: Nombres de liouville aux nombres normaux Comptes Rendus Mathématique, Vol. 335, p 117. Académie des Sciences, Paris (2002)

  6. Bugeaud, Y.: Distribution Modulo One and Diophantine Approximation. Cambridge (2012)

  7. Calude C.S., Staiger, L.: Liouville Numbers, Borel Normality and Algorithmic Randomness. Technical Report CDMTCS-448, CDMTCS Research Report Series, University of Auckland (2013)

  8. Calude, C.S., Staiger, L., Stephan, F.: Theory and Applications of Models of Computation (2014)

  9. Champernowne, D.G.: Construction of decimals normal in the scale of ten. J. London Math. Soc. 2 (8), 254–260 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theor. Comput. Sci. 310, 1–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758 (1946)

    MathSciNet  MATH  Google Scholar 

  12. Good, I.J.: Normal recurring decimals. J. Lond. Math. Soc. 21, 167 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hertling, P.: Disjunctive omega-words and real numbers. J. UCS 2 (7), 549–568 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Kano, H.: General constructions of normal numbers of the Korobov type. Osaka J. Math. 4, 909 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Mahler, K.: Arithmatische eigenschaften der Lȯsungen einer Klasse von Funktionalgrichungen. Math. Ann. 101, 342 (1929)

    Article  MathSciNet  Google Scholar 

  16. Mahler, K.: Arithmatische eigenschaften einer Klasse von Dezimalbru̇chen. Proc. Kon. Nederlandsche Akad. v. Wetenschappen 40, 421 (1937)

    MATH  Google Scholar 

  17. Schnorr, C.P., Stimm, H.: Endliche Automaten und Zufallsfolgen. Acta Informatica 1, 345–359 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schnorr, C.P., Stimm, H.: Endliche Automaten und Zufallsfolgen. Acta Informatica 1, 345–359 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. Staiger, L.: The Kolmogorov complexity of real numbers. Theor. Comput. Sci. 284, 455–466 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ziv, J., Lempel, A.: Compression of individual sequences via variable rate coding. IEEE Trans. Inf. Theory 24, 530–536 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to gratefully acknowledge the help of David Kandathil and Sujith Vijay, for their suggestions during early versions of this work and Mrinalkanti Ghosh, Aurko Roy and anonymous reviewers for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyadev Nandakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandakumar, S., Vangapelli, S.K. Normality and Finite-State Dimension of Liouville Numbers. Theory Comput Syst 58, 392–402 (2016). https://doi.org/10.1007/s00224-014-9554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-014-9554-8

Keywords

Navigation