Skip to main content
Log in

Differences in Vertebral Morphology and bone Mineral Density between Grade 1 Vertebral Fracture and Non-Fractured Participants in the Chinese Population

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Purpose: To investigate the difference in vertebral morphology and bone mineral density (BMD) between grade 1 VFs and non-fractured participants in the Chinese population to shed light on the clinical significance of grade 1 VFs from various perspectives. Methods: This retrospective cohort study included patients who received a chest low-dose computed tomography (LDCT) scan for health examination and visited the First Affiliated Hospital of Zhengzhou University, Henan, China, from October 2019 to August 2022. Data were analyzed from March 2023 to July 2023. The main outcome of this study was the difference in morphological parameters and BMD between grade 1 VFs and non-fractured participants. The prevalence of grade 1 VFs in China populations was calculated. The difference in BMD of three fracture types in the Grade 1 group was also evaluated. Results: A total of 3652 participants (1799 males, 54.85 ± 9.02 years, range, 40-92 years; 1853 females, 56.00 ± 9.08 years, range, 40-93 years) were included. The prevalence of grade 2 and 3 increase with age. The prevalence of grade 1 VFs gradually increases ≤ 50y to 60-69y group, but there is a decrease in the ≥ 70 years male group (6.6%) and a rise in the female group (25.5%). There was no significant statistical difference observed in vertebral shape indices (VSI) and BMD between the Grade 1 group and the no-fractured group aged < 50 years old except the wedge index in male. The biconcavity index did not differ between the non-fractured group and the Grade 1 group in men aged 50-59 years, whereas a significant statistical difference was observed in women. Additionally, the results of BMD were consistent with these findings. For the 40-59 years age group, there were significant differences between the compression deformity group and the other groups. Conclusions:The grade 1 group had higher VSI and lower BMD than the non-fractured group, suggesting an association between the Grade 1 group and osteoporosis in individuals aged over 50 for women and over 60 for men. Different fracture types have significant variations in BMD among middle-aged people. The prevalence of grade 1 VFs exhibits an age-related increase in both genders, with opposite trends observed between older males and females. We suggested VSI can aid physicians in the diagnosis of grade 1 VFs.

Mini Abstract

Is there a difference in vertebral morphology and BMD between grade 1 VFs and non-fractured participants? The findings suggest vertebral morphology can aid physicians in the diagnosis of grade 1 VFs, thereby enhancing diagnostic accuracy and improving patient outcomes. Different fracture types have significant variations in BMD among middle-aged people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Johansson L, Sundh D, Magnusson P, Rukmangatharajan K, Mellstrom D, Nilsson AG, Lorentzon M (2020) Grade 1 vertebral fractures identified by densitometric lateral spine imaging Predict Incident Major Osteoporotic Fracture independently of clinical risk factors and bone Mineral Density in Older Women. J Bone Miner Res 35(10):1942–1951. https://doi.org/10.1002/jbmr.4108

    Article  CAS  PubMed  Google Scholar 

  2. Zheng XQ, Xu L, Huang J, Zhang CG, Yuan WQ, Sun CG, Zhang ZS, Wei C, Wang JX, Cummings SR, Xia WB, Wang SF, Zhan SY, Song CL (2023) Incidence and cost of vertebral fracture in urban China: a 5-year population-based cohort study. Int J Surg 109(7):1910–1918. https://doi.org/10.1097/JS9.0000000000000411

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fontalis A, Kenanidis E, Kotronias RA, Papachristou A, Anagnostis P, Potoupnis M, Tsiridis E (2019) Current and emerging osteoporosis pharmacotherapy for women: state of the art therapies for preventing bone loss. Expert Opin Pharmacother 20(9):1123–1134. https://doi.org/10.1080/14656566.2019.1594772

    Article  CAS  PubMed  Google Scholar 

  4. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148. https://doi.org/10.1002/jbmr.5650080915

    Article  CAS  PubMed  Google Scholar 

  5. Wang YXJ, Diacinti D, Yu W, Cheng XG, Nogueira-Barbosa MH, Che-Nordin N, Guglielmi G, Ruiz F (2020) Santiago Semi-quantitative grading and extended semi-quantitative grading for osteoporotic vertebral deformity: a radiographic image database for education and calibration Ann Transl Med. 8(6): 398, https://doi.org/10.21037/atm.2020.02.23

  6. Diacinti D, Guglielmi G (2010) Vertebral morphometry. Radiol Clin North Am 48(3):561–575. https://doi.org/10.1016/j.rcl.2010.02.018

    Article  PubMed  Google Scholar 

  7. Hipp JA, Grieco TF, Newman P, Reitman CA (2022) Definition of normal vertebral morphometry using NHANES-II radiographs. JBMR Plus 6(10):e10677. https://doi.org/10.1002/jbm4.10677

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fechtenbaum J, Briot K, Paternotte S, Audran M, Breuil V, Cortet B, Debiais F, Grados F, Guggenbuhl P, Laroche M, Legrand E, Lespessailles E, Marcelli C, Orcel P, Szulc P, Thomas T, Kolta S, Roux C (2014) and S. bone section of the French Rheumatology Difficulties in the diagnosis of vertebral fracture in men: agreement between doctors Joint Bone Spine. 81(2): 169 – 74, https://doi.org/10.1016/j.jbspin.2013.12.006

  9. Lentle B, Koromani F, Brown JP, Oei L, Ward L, Goltzman D, Rivadeneira F, Leslie WD, Probyn L, Prior J, Hammond I, Cheung AM, Oei EH, S. Vertebral Fracture Research Groups of the CaMos, and, Rotterdam S (2019) The Radiology of Osteoporotic Vertebral Fractures Revisited J Bone Miner Res. 34(3): 409–418, https://doi.org/10.1002/jbmr.3669

  10. Kanterewicz E, Puigoriol E, Garcia-Barrionuevo J, del Rio L, Casellas M, Peris P, Frodos Research G (2014) Prevalence of vertebral fractures and minor vertebral deformities evaluated by DXA-assisted vertebral fracture assessment (VFA) in a population-based study of postmenopausal women: the FRODOS study. Osteoporos Int 25(5):1455–1464. https://doi.org/10.1007/s00198-014-2628-2

    Article  CAS  PubMed  Google Scholar 

  11. Wang YXJ, Lu ZH, Leung JCS, Fang ZY, Kwok TCY (2023) Osteoporotic-like vertebral fracture with less than 20% height loss is associated with increased further vertebral fracture risk in older women: the MrOS and MsOS (Hong Kong) year-18 follow-up radiograph results. Quant Imaging Med Surg 13(2):1115–1125. https://doi.org/10.21037/qims-2022-06

    Article  CAS  PubMed  Google Scholar 

  12. Bouxsein ML, Karasik D (2006) Bone geometry and skeletal fragility. Curr Osteoporos Rep 4(2):49–56. https://doi.org/10.1007/s11914-006-0002-9

    Article  PubMed  Google Scholar 

  13. Autio E, Oura P, Karppinen J, Paananen M, Junno JA, Niinimaki J (2021) The association between physical activity and vertebral dimension change in early adulthood - the Northern Finland Birth Cohort 1986 study. Bone Rep 14:101060. https://doi.org/10.1016/j.bonr.2021.101060

    Article  PubMed  PubMed Central  Google Scholar 

  14. Johansson H, Oden A, McCloskey EV, Kanis JA (2014) Mild morphometric vertebral fractures predict vertebral fractures but not non-vertebral fractures. Osteoporos Int 25(1):235–241. https://doi.org/10.1007/s00198-013-2460-0

    Article  CAS  PubMed  Google Scholar 

  15. Lentle BC, Berger C, Probyn L, Brown JP, Langsetmo L, Fine B, Lian K, Shergill AK, Trollip J, Jackson S, Leslie WD, Prior JC, Kaiser SM, Hanley DA, Adachi JD, Towheed T, Davison KS, Cheung AM, Goltzman D, CaMos G (2018) Research Comparative Analysis of the Radiology of Osteoporotic Vertebral Fractures in Women and Men: Cross-Sectional and Longitudinal Observations from the Canadian Multicentre Osteoporosis Study (CaMos) J Bone Miner Res. 33(4): 569–579, https://doi.org/10.1002/jbmr.3222

  16. Kanterewicz E, Puigoriol E, Rodriguez Cros JR, Peris P (2019) Prevalent vertebral fractures and minor vertebral deformities analyzed by vertebral fracture assessment (VFA) increases the risk of incident fractures in postmenopausal women: the FRODOS study. Osteoporos Int 30(10):2141–2149. https://doi.org/10.1007/s00198-019-04962-3

    Article  CAS  PubMed  Google Scholar 

  17. Roux C, Fechtenbaum J, Kolta S, Briot K, Girard M (2007) Mild prevalent and incident vertebral fractures are risk factors for new fractures. Osteoporos Int 18(12):1617–1624. https://doi.org/10.1007/s00198-007-0413-1

    Article  CAS  PubMed  Google Scholar 

  18. Cheng X, Yuan H, Cheng J, Weng X, Xu H, Gao J, Huang M, Wang YXJ, Wu Y, Xu W, Liu L, Liu H, Huang C, Jin Z, Tian W, Bone, and, M.A.M.R.S.o.C.M.D.A.O. C (2020) G.o.C.O.A.B.D.G.o.C.S.o. Joint Group of Chinese Society of Radiology Chinese expert consensus on the diagnosis of osteoporosis by imaging and bone mineral density Quant Imaging Med Surg. 10(10): 2066–2077, https://doi.org/10.21037/qims-2020-16

  19. Skowronska-Jozwiak E, Pludowski P, Karczmarewicz E, Lorenc RS, Lewinski A (2010) Effect of sex, age, and anthropometric parameters on the size and shape of vertebrae in densitometric morphometry: results of the EPOLOS study Pol Arch Med Wewn. 120(5): 189 – 96

  20. Chen Liuping Y, Zhuo P, Yaling W, Hanqi, Yong L (2023) The consistency of Artificial Intelligence Bone Mineral Density Measurement System and QCT in Measuring Bone Mineral density. Chin Computed Med Imaging 29(02):178–183. https://doi.org/10.19627/j.cnki.cn31-1700/th.2023.02.018

    Article  Google Scholar 

  21. Pan Y, Shi D, Wang H, Chen T, Cui D, Cheng X, Lu Y (2020) Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening. Eur Radiol 30(7):4107–4116. https://doi.org/10.1007/s00330-020-06679-y

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation Medical Image Computing and Computer-Assisted Intervention, Pt Iii. 9351: 234–241, https://doi.org/10.1007/978-3-319-24574-4_28

  23. Grados F, Fardellone P, Benammar M, Muller C, Roux C, Sebert JL (1999) Influence of age and sex on vertebral shape indices assessed by radiographic morphometry. Osteoporos Int 10(6):450–455. https://doi.org/10.1007/s001980050253

    Article  CAS  PubMed  Google Scholar 

  24. Huang G, Liu Z, Weinberger KQ (2016) Densely Connected Convolutional Networks abs/1608.06993

  25. Huang G, Liu Z, Pleiss G, van der Maaten L, Weinberger KQ (2022) Convolutional Networks with dense connectivity. IEEE Trans Pattern Anal Mach Intell 44(12):8704–8716. https://doi.org/10.1109/Tpami.2019.2918284

    Article  PubMed  Google Scholar 

  26. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official positions. J Clin Densitom 11(1):123–162. https://doi.org/10.1016/j.jocd.2007.12.010

    Article  PubMed  Google Scholar 

  27. Wang YXJ, Che-Nordin N, Leung JCS, Man Yu BW, Griffith JF, Kwok TCY (2020) Elderly men have much lower vertebral fracture risk than elderly women even at advanced age: the MrOS and MsOS (Hong Kong) year 14 follow-up radiology results. Arch Osteoporos 15(1):176. https://doi.org/10.1007/s11657-020-00845-x

    Article  CAS  PubMed  Google Scholar 

  28. Pan Y, Zhao F, Cheng G, Wang H, Lu X, He D, Wu Y, Ma H, Ph DH, Yu T (2023) Automated vertebral bone mineral density measurement with phantomless internal calibration in chest LDCT scans using deep learning. Br J Radiol 96(1152):20230047. https://doi.org/10.1259/bjr.20230047

    Article  PubMed  Google Scholar 

  29. Cheng X, Zhao K, Zha X, Du X, Li Y, Chen S, Wu Y, Li S, Lu Y, Zhang Y, Xiao X, Li Y, Ma X, Gong X, Chen W, Yang Y, Jiao J, Chen B, Lv Y, Gao J, Hong G, Pan Y, Yan Y, Qi H, Ran L, Zhai J, Wang L, Li K, Fu H, Wu J, Liu S, Blake GM, Pickhardt PJ, Ma Y, Fu X, Dong S, Zeng Q, Guo Z, Hind K, Engelke K W. Tian, and i. China Health Big Data project (2021) opportunistic screening using low-dose CT and the prevalence of osteoporosis in China: a Nationwide, Multicenter Study. J Bone Miner Res. 36(3): 427–435, https://doi.org/10.1002/jbmr.4187

  30. Fujiwara S, Mizuno S, Ochi Y, Sasaki H, Kodama K, Russell WJ, Hosoda Y (1991) The incidence of thoracic vertebral fractures in a Japanese population, Hiroshima and Nagasaki, 1958-86. J Clin Epidemiol 44(10):1007–1014. https://doi.org/10.1016/0895-4356(91)90002-q

    Article  CAS  PubMed  Google Scholar 

  31. Santavirta S, Konttinen YT, Heliovaara M, Knekt P, Luthje P, Aromaa A (1992) Determinants of osteoporotic thoracic vertebral fracture. Screening of 57,000 Finnish women and men. Acta Orthop Scand 63(2):198–202. https://doi.org/10.3109/17453679209154823

    Article  CAS  PubMed  Google Scholar 

  32. Carina V, Della Bella E, Costa V, Bellavia D, Veronesi F, Cepollaro S, Fini M, Giavaresi G (2020) Bone’s response to mechanical loading in aging and osteoporosis: Molecular mechanisms. Calcif Tissue Int 107(4):301–318. https://doi.org/10.1007/s00223-020-00724-0

    Article  CAS  PubMed  Google Scholar 

  33. Cianferotti L, Cipriani C, Corbetta S, Corona G, Defeudis G, Lania AG, Messina C, Napoli N, Mazziotti G (2023) Bone quality in endocrine diseases: determinants and clinical relevance. J Endocrinol Invest 46(7):1283–1304. https://doi.org/10.1007/s40618-023-02056-w

    Article  CAS  PubMed  Google Scholar 

  34. Szybiak W, Kujawa B, Miedziaszczyk M, Lacka K (2023) Effect of growth hormone and estrogen replacement therapy on bone Mineral density in women with Turner Syndrome: a Meta-analysis and systematic review. Pharmaceuticals (Basel) 16(9). https://doi.org/10.3390/ph16091320

  35. Gao C, Xu Y, Li L, Gu WQ, Yi CT, Zhu Q, Gu HA, Chen BH, Wang QQ, Tang F, Xu JL, Hou JM, Song HJ, Wang H, Wang ZL, Zhang ZL (2019) Prevalence of osteoporotic vertebral fracture among community-dwelling elderly in Shanghai. Chin Med J (Engl) 132(14):1749–1751. https://doi.org/10.1097/CM9.0000000000000332

    Article  PubMed  Google Scholar 

  36. Liu Y, Yu A, Li K, Wang L, Huang P, Geng J, Zhang Y, Duanmu YY, Blake GM, Cheng X (2022) Differences in spine volumetric bone mineral density between grade 1 vertebral fracture and non-fractured participants in the China action on spine and hip status study. Front Endocrinol (Lausanne) 13:1013597. https://doi.org/10.3389/fendo.2022.1013597

    Article  PubMed  Google Scholar 

  37. Zheng XQ, Xu L, Huang J, Zhang CG, Yuan WQ, Sun CG, Zhang ZS, Wei C, Wang JX, Cummings SR, Xia WB, Wang SF, Zhan SY, Song CL (2023) Incidence and cost of vertebral fracture in urban China: a five-year population-based cohort study. Int J Surg. https://doi.org/10.1097/JS9.0000000000000411

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu F, Xia W (2019) The epidemiology of osteoporosis, associated fragility fractures, and management gap in China. Arch Osteoporos 14(1):32. https://doi.org/10.1007/s11657-018-0549-y

    Article  PubMed  Google Scholar 

  39. Kim SW, Jeon JH, Choi YK, Lee WK, Hwang IR, Kim JG, Lee IK, Park KG (2015) Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008–2011. Endocrine 49(3):791–799. https://doi.org/10.1007/s12020-015-0532-y

    Article  CAS  PubMed  Google Scholar 

  40. Park Y, Kwon SJ, Ha YC (2016) Association between Urinary Sodium Excretion and Bone Health in male and female adults. Ann Nutr Metab 68(3):189–196. https://doi.org/10.1159/000444536

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y (2023) Diagnosis and differential diagnosis of osteoporotic vertebral fractures. Chin J Clin 51(05):516–521. https://doi.org/10.3969/j.issn.2095-8552.2023.05.003

    Article  Google Scholar 

  42. Wang YXJ (2022) An update of our understanding of radiographic diagnostics for prevalent osteoporotic vertebral fracture in elderly women. Quant Imaging Med Surg 12(7):3495–3514. https://doi.org/10.21037/qims-22-360

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ferrar L, Jiang G, Armbrecht G, Reid DM, Roux C, Gluer CC, Felsenberg D, Eastell R (2007) Is short vertebral height always an osteoporotic fracture? The osteoporosis and Ultrasound Study (OPUS). Bone 41(1):5–12. https://doi.org/10.1016/j.bone.2007.03.015

    Article  CAS  PubMed  Google Scholar 

  44. Fan Y, Fan Y, Li Z, Lv C, Zhang B (2012) Bone surface mapping method. PLoS ONE 7(3):e32926. https://doi.org/10.1371/journal.pone.0032926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seeman E (2008) Bone quality: the material and structural basis of bone strength. J Bone Miner Metab 26(1):1–8. https://doi.org/10.1007/s00774-007-0793-5

    Article  PubMed  Google Scholar 

  46. Gregson CL, Armstrong DJ, Bowden J, Cooper C, Edwards J, Gittoes NJL, Harvey N, Kanis J, Leyland S, Low R, McCloskey E, Moss K, Parker J, Paskins Z, Poole K, Reid DM, Stone M, Thomson J, Vine N, Compston J (2022) UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 17(1):58. https://doi.org/10.1007/s11657-022-01061-5

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lunt M, Felsenberg D, Reeve J, Benevolenskaya L, Cannata J, Dequeker J, Dodenhof C, Falch JA, Masaryk P, Pols HA, Poor G, Reid DM, Scheidt-Nave C, Weber K, Varlow J, Kanis JA, O’Neill TW, Silman AJ (1997) Bone density variation and its effects on risk of vertebral deformity in men and women studied in thirteen European centers: the EVOS Study. J Bone Miner Res 12(11):1883–1894. https://doi.org/10.1359/jbmr.1997.12.11.1883

    Article  CAS  PubMed  Google Scholar 

  48. Bruno AG, Broe KE, Zhang X, Samelson EJ, Meng CA, Manoharan R, D’Agostino J, Cupples LA, Kiel DP, Bouxsein ML (2014) Vertebral size, bone density, and strength in men and women matched for age and areal spine BMD. J Bone Miner Res 29(3):562–569. https://doi.org/10.1002/jbmr.2067

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Introduction Plan of High-end Foreign Experts in Henan Province Program (Grant. HNGD2022032) from the Science and Technology Department of Henan Province.

Author information

Authors and Affiliations

Authors

Contributions

Yan Wu and Duoshan Ma had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: Duoshan Ma, Yan Wu. Acquisition, analysis, or interpretation of data: Duoshan Ma, Yan Wang, Xinxin Zhang, Danyang Su, Chunyu Wang. Drafting of the manuscript: Duoshan Ma. Critical revision of the manuscript for important intellectual content: Yan Wu, Xiaopeng Yang, Huilong Liu. Statistical analysis: Duoshan Ma, Yan Wu. Obtained funding: Yan Wu. Administrative, technical, or material support: Jianbo Gao, Yan Wu. Supervision: Yan Wu.

Corresponding author

Correspondence to Yan Wu.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was approved by the research ethics committee of the First Affiliated Hospital of Zhengzhou University (Approval no. 2022-KY-0961-002).

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

Duoshan Ma, Yan Wang, Xinxin Zhang, Danyang Su, Chunyu Wang, Huilong Liu, Xiaopeng Yang, Jianbo Gao, Yan Wu declare that they have no conflict of interest.

Competing Interests

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Wang, Y., Zhang, X. et al. Differences in Vertebral Morphology and bone Mineral Density between Grade 1 Vertebral Fracture and Non-Fractured Participants in the Chinese Population. Calcif Tissue Int 114, 397–408 (2024). https://doi.org/10.1007/s00223-024-01185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-024-01185-5

Keywords

Navigation