Skip to main content

Advertisement

Log in

Titer-Dependent Effect of Anti-Citrullinated Protein Antibodies On Systemic Bone Mass in Rheumatoid Arthritis Patients

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone loss in rheumatoid arthritis (RA) is a key feature both local and systemic. Anti-citrullinated protein antibodies (ACPA) have recently been found to directly induce differentiation and activation of osteoclasts and therefore contribute to periarticular bone loss. The aim of this study was to analyze the effect of ACPA on systemic bone mineral density (BMD) in patients with established RA. This is a cross-sectional study with a single-center RA population. BMD was measured with Dual X-ray absorptiometry at lumbar and femoral sites. ACPA were measured by EIA. Multivariate analysis was performed adjusting for the main confounding variables. One hundred twenty-seven RA patients were enrolled. In univariate analysis, ACPA-positive patients showed lower BMD Z-score (SD below the age- and gender-matched mean reference value) at femoral sites (p < 0.01). A negative correlation between ACPA titer and BMD Z-score at all sites was observed (p < 0.01). The multivariate analysis adjusted for the main confounding variables confirmed the negative effect of ACPA at femoral sites (p < 0.05), but not at lumbar spine BMD. No significant effect of rheumatoid factor has been observed. ACPA have a negative titer-dependent effect on BMD at femoral sites, mainly constituted by cortical bone. ACPA-positive patients, especially if at high titer, should undergo bone investigations and be treated with bone protecting agents. Disease-modifying anti-rheumatic drugs lowering ACPA titer might have positive effects on systemic bone mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kleyer A, Schett G (2014) Arthritis and bone loss: a hen and egg story. Curr Opin Rheumatol 26:80–84

    Article  CAS  PubMed  Google Scholar 

  2. Wang SY, Liu YY, Ye H, Guo JP, Li R, Liu X, Li ZG (2011) Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol 38:821–827

    Article  CAS  PubMed  Google Scholar 

  3. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163

    Article  CAS  PubMed  Google Scholar 

  4. Gravallese EM (2002) Bone destruction in arthritis. Ann Rheum Dis 61(Suppl 2):ii84–i86

    Article  PubMed  PubMed Central  Google Scholar 

  5. Adamopoulos IE, Mellins ED (2015) Alternative pathways of osteoclastogenesis in inflammatory arthritis. Nat Rev Rheumatol 11:189–194

    Article  CAS  PubMed  Google Scholar 

  6. Kotake S, Nanke Y (2014) Effect of TNFalpha on osteoblastogenesis from mesenchymal stem cells. Biochim Biophys Acta 1840:1209–1213

    Article  CAS  PubMed  Google Scholar 

  7. Rossini M, Viapiana O, Adami S, Fracassi E, Idolazzi L, Dartizio C, Povino MR, Orsolini G, Gatti D (2015) In patients with rheumatoid arthritis, Dickkopf-1 serum levels are correlated with parathyroid hormone, bone erosions and bone mineral density. Clin Exp Rheumatol 33:77–83

    PubMed  Google Scholar 

  8. van der Helm-van Mil AH, Verpoort KN, Breedveld FC, Toes RE, Huizinga TW (2005) Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis. Arthritis Res Ther 7:R949–R958

    Article  Google Scholar 

  9. Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, Jakobsson PJ, Baum W, Nimmerjahn F, Szarka E, Sarmay G, Krumbholz G, Neumann E, Toes R, Scherer HU, Catrina AI, Klareskog L, Jurdic P, Schett G (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122:1791–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krishnamurthy A, Joshua V, Haj Hensvold A, Jin T, Sun M, Vivar N, Ytterberg AJ, Engstrom M, Fernandes-Cerqueira C, Amara K, Magnusson M, Wigerblad G, Kato J, Jimenez-Andrade JM, Tyson K, Rapecki S, Lundberg K, Catrina SB, Jakobsson PJ, Svensson C, Malmstrom V, Klareskog L, Wahamaa H, Catrina AI (2016) Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis 75:721–729

    Article  CAS  PubMed  Google Scholar 

  11. Kleyer A, Finzel S, Rech J, Manger B, Krieter M, Faustini F, Araujo E, Hueber AJ, Harre U, Engelke K, Schett G (2014) Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis 73:854–860

    Article  PubMed  Google Scholar 

  12. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovsky J, Wolfe F, Hawker G (2010) 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 69:1580–1588

    Article  PubMed  Google Scholar 

  13. Prevoo ML, van ‘t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38:44–48

    Article  CAS  PubMed  Google Scholar 

  14. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4:368–381

    Article  CAS  PubMed  Google Scholar 

  15. Chang X, Yamada R, Suzuki A, Sawada T, Yoshino S, Tokuhiro S, Yamamoto K (2005) Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in synovial tissue of rheumatoid arthritis. Rheumatology (Oxford) 44:40–50

    Article  CAS  Google Scholar 

  16. Foulquier C, Sebbag M, Clavel C, Chapuy-Regaud S, Al Badine R, Mechin MC, Vincent C, Nachat R, Yamada M, Takahara H, Simon M, Guerrin M, Serre G (2007) Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum 56:3541–3553

    Article  CAS  PubMed  Google Scholar 

  17. Schett G, Gravallese E (2012) Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol 8:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Tuyl LH, Voskuyl AE, Boers M, Geusens P, Landewe RB, Dijkmans BA, Lems WF (2010) Baseline RANKL:OPG ratio and markers of bone and cartilage degradation predict annual radiological progression over 11 years in rheumatoid arthritis. Ann Rheum Dis 69:1623–1628

    Article  PubMed  Google Scholar 

  19. Boumans MJ, Thurlings RM, Yeo L, Scheel-Toellner D, Vos K, Gerlag DM, Tak PP (2012) Rituximab abrogates joint destruction in rheumatoid arthritis by inhibiting osteoclastogenesis. Ann Rheum Dis 71:108–113

    Article  CAS  PubMed  Google Scholar 

  20. Rooney T, Edwards CK 3rd, Gogarty M, Greenan L, Veale DJ, FitzGerald O, Dayer JM, Bresnihan B (2010) Synovial tissue rank ligand expression and radiographic progression in rheumatoid arthritis: observations from a proof-of-concept randomized clinical trial of cytokine blockade. Rheumatol Int 30:1571–1580

    Article  CAS  PubMed  Google Scholar 

  21. Haynes D, Crotti T, Weedon H, Slavotinek J, Au V, Coleman M, Roberts-Thomson PJ, Ahern M, Smith MD (2008) Modulation of RANKL and osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis in response to disease-modifying antirheumatic drug treatment and correlation with radiologic outcome. Arthritis Rheum 59:911–920

    Article  CAS  PubMed  Google Scholar 

  22. Hensvold AH, Joshua V, Li W, Larkin M, Qureshi F, Israelsson L, Padyukov L, Lundberg K, Defranoux N, Saevarsdottir S, Catrina AI (2015) Serum RANKL levels associate with anti- citrullinated protein antibodies in early untreated rheumatoid arthritis and are modulated following methotrexate. Arthritis Res Ther 17:239

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lu MC, Yu CL, Yu HC, Huang HB, Koo M, Lai NS (2016) Anti-citrullinated protein antibodies promote apoptosis of mature human Saos-2 osteoblasts via cell-surface binding to citrullinated heat shock protein 60. Immunobiology 221:76–83

    Article  CAS  PubMed  Google Scholar 

  24. Boyesen P, Hoff M, Odegard S, Haugeberg G, Syversen SW, Gaarder PI, Okkenhaug C, Kvien TK (2009) Antibodies to cyclic citrullinated protein and erythrocyte sedimentation rate predict hand bone loss in patients with rheumatoid arthritis of short duration: a longitudinal study. Arthritis Res Ther 11:R103

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhu TY, Griffith JF, Qin L, Hung VW, Fong TN, Au SK, Tang XL, Kwok AW, Leung PC, Li EK, Tam LS (2013) Structure and strength of the distal radius in female patients with rheumatoid arthritis: a case-control study. J Bone Miner Res 28:794–806

    Article  PubMed  Google Scholar 

  26. Bugatti S, Bogliolo L, Vitolo B, Manzo A, Montecucco C, Caporali R (2016) Anti-citrullinated protein antibodies and high levels of rheumatoid factor are associated with systemic bone loss in patients with early untreated rheumatoid arthritis. Arthritis Res Ther 18:226

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rossini M, Bagnato G, Frediani B, Iagnocco A, G LAM, Minisola G, Caminiti M, Varenna M, Adami S (2011) Relationship of focal erosions, bone mineral density, and parathyroid hormone in rheumatoid arthritis. J Rheumatol 38:997–1002

    Article  CAS  PubMed  Google Scholar 

  28. Jensen T, Hansen M, Jensen KE, Podenphant J, Hansen TM, Hyldstrup L (2005) Comparison of dual X-ray absorptiometry (DXA), digital X-ray radiogrammetry (DXR), and conventional radiographs in the evaluation of osteoporosis and bone erosions in patients with rheumatoid arthritis. Scand J Rheumatol 34:27–33

    Article  CAS  PubMed  Google Scholar 

  29. Haugeberg G, Lodder MC, Lems WF, Uhlig T, Orstavik RE, Dijkmans BA, Kvien TK, Woolf AD (2004) Hand cortical bone mass and its associations with radiographic joint damage and fractures in 50–70 year old female patients with rheumatoid arthritis: cross sectional Oslo-Truro-Amsterdam (OSTRA) collaborative study. Ann Rheum Dis 63:1331–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoff M, Haugeberg G, Odegard S, Syversen S, Landewe R, van der Heijde D, Kvien TK (2009) Cortical hand bone loss after 1 year in early rheumatoid arthritis predicts radiographic hand joint damage at 5-year and 10-year follow-up. Ann Rheum Dis 68:324–329

    Article  CAS  PubMed  Google Scholar 

  31. Sharp JT, Tsuji W, Ory P, Harper-Barek C, Wang H, Newmark R (2010) Denosumab prevents metacarpal shaft cortical bone loss in patients with erosive rheumatoid arthritis. Arthritis Care Res (Hoboken) 62:537–544

    Article  Google Scholar 

  32. Kostenuik PJ, Smith SY, Jolette J, Schroeder J, Pyrah I, Ominsky MS (2011) Decreased bone remodeling and porosity are associated with improved bone strength in ovariectomized cynomolgus monkeys treated with denosumab, a fully human RANKL antibody. Bone 49:151–161

    Article  CAS  PubMed  Google Scholar 

  33. Takeuchi T, Tanaka Y, Ishiguro N, Yamanaka H, Yoneda T, Ohira T, Okubo N, Genant HK, van der Heijde D (2016) Effect of denosumab on Japanese patients with rheumatoid arthritis: a dose-response study of AMG 162 (Denosumab) in patients with RheumatoId arthritis on methotrexate to Validate inhibitory effect on bone Erosion (DRIVE)-a 12-month, multicentre, randomised, double-blind, placebo-controlled, phase II clinical trial. Ann Rheum Dis 75:983–990

    Article  CAS  PubMed  Google Scholar 

  34. Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, van der Heijde D, Zhou L, Tsuji W, Newmark R, Denosumab Rheumatoid Arthritis Study G (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309

    Article  CAS  PubMed  Google Scholar 

  35. Rossini M, Adami G, Viapiana O, Idolazzi L, Gatti D (2016) Denosumab, cortical bone and bone erosions in rheumatoid arthritis. Ann Rheum Dis

  36. Kerr GS, Sabahi I, Richards JS, Caplan L, Cannon GW, Reimold A, Thiele GM, Johnson D, Mikuls TR (2011) Prevalence of vitamin D insufficiency/deficiency in rheumatoid arthritis and associations with disease severity and activity. J Rheumatol 38:53–59

    Article  PubMed  Google Scholar 

  37. Nielen MM, van Schaardenburg D, Reesink HW, Twisk JW, van de Stadt RJ, van der Horst-Bruinsma IE, de Koning MH, Habibuw MR, Dijkmans BA (2006) Simultaneous development of acute phase response and autoantibodies in preclinical rheumatoid arthritis. Ann Rheum Dis 65:535–537

    Article  CAS  PubMed  Google Scholar 

  38. Hughes-Austin JM, Deane KD, Derber LA, Kolfenbach JR, Zerbe GO, Sokolove J, Lahey LJ, Weisman MH, Buckner JH, Mikuls TR, O’Dell JR, Keating RM, Gregersen PK, Robinson WH, Holers VM, Norris JM (2013) Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: studies of the aetiology of Rheumatoid Arthritis (SERA). Ann Rheum Dis 72:901–907

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Sara Rossini who provided editorial assistance.

Funding

No funding was received to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Orsolini.

Ethics declarations

Conflict of interest

Giovanni Orsolini, Cristian Caimmi, Ombretta Viapiana, Luca Idolazzi, Elena Fracassi, Davide Gatti, Giovanni Adami, and Maurizio Rossini have no potential conflict of interest to disclose.

Ethical Approval

The study was performed according to the Helsinki declaration and approved by Ethics Committee of Provinces of Verona and Rovigo with protocol number 1806.

Informed Consent

All patients provided written informed consent for their participation to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orsolini, G., Caimmi, C., Viapiana, O. et al. Titer-Dependent Effect of Anti-Citrullinated Protein Antibodies On Systemic Bone Mass in Rheumatoid Arthritis Patients. Calcif Tissue Int 101, 17–23 (2017). https://doi.org/10.1007/s00223-017-0253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0253-8

Keywords

Navigation