Skip to main content

Advertisement

Log in

Systematic Identification, Characterization and Target Gene Analysis of microRNAs Involved in Osteoarthritis Subchondral Bone Pathogenesis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

This study aimed to identify the microRNAs associated with sclerotic status of subchondral bone in the pathogenesis of osteoarthritis (OA). Total RNA was extracted from non-sclerotic and sclerotic OA subchondral bone from patients undergoing knee replacement surgeries. miRCURY™ LNA miRNA chip and qRT-PCR were used to profile and validate differential microRNA expression. In addition, we further confirmed profiles of altered miRNAs in an OA rat meniscectomy animal model and their putative targets of the miRNAs were predicted using ingenuity (IPA) software. Finally, five short-listed miRNAs were reactivated by transient in vitro overexpression (miRNA mimics) in subchondral bone osteoblasts and their phenotypes were assessed. Functional screening identified 30 differentiated miRNAs in sclerotic subchondral bone compared to non-sclerotic bone of OA patients. Data integration resulted in confirmation of the eight miRNAs, with aberrant expression in independent human OA bone sample set. In silico analysis (IPA) identified 732 mRNA transcripts as putative targets of the eight altered miRNAs, of which twenty genes were validated to be differentially expressed in sclerotic compared to non-sclerotic bone samples. Out of eight dysregulated miRNA’s, five of them showed consistent time-dependent downregulation in a rat OA model. Furthermore, synthetic miR-199a-3p, miR-199a-5p, miR-590-5p, and miR-211-5p mimics rescued the abnormal osteoarthritic subchondral bone osteoblast gene expression and mineralization. We have identified four novel miRNAs that play important roles in subchondral bone pathogenesis in OA. Additional studies are required to develop these miRNAs into therapeutic modalities for OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Henrotin Y, Pesesse L, Sanchez C (2012) Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporos Int 23(Suppl 8):S847–S851

    Article  PubMed  Google Scholar 

  2. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  3. Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR, Haqqi TM (2010) MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum 62:1361–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Diaz-Prado S, Cicione C, Muinos-Lopez E, Hermida-Gomez T, Oreiro N, Fernandez-Lopez C, Blanco FJ (2012) Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord 13:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, Kato Y, Sato T, Lotz MK, Asahara H (2009) MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60:2723–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One 3:e3740

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jones SW, Watkins G, Le Good N, Roberts S, Murphy CL, Brockbank SM, Needham MR, Read SJ, Newham P (2009) The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthr Cartil 17:464–472

    Article  CAS  PubMed  Google Scholar 

  8. Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 108:6139–6144

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liao L, Yang X, Su X, Hu C, Zhu X, Yang N, Chen X, Shi S, Jin Y (2013) Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis 4:e600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prasadam I, Crawford R, Xiao Y (2012) Aggravation of ADAMTS and matrix metalloproteinase production and role of ERK1/2 pathway in the interaction of osteoarthritic subchondral bone osteoblasts and articular cartilage chondrocytes—possible pathogenic role in osteoarthritis. J Rheumatol 39:621–634

    Article  CAS  PubMed  Google Scholar 

  12. Prasadam I, Friis T, Shi W, van Gennip S, Crawford R, Xiao Y (2010) Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast differentiation via MAPK signalling pathway involving ERK1/2. Bone 46:226–235

    Article  CAS  PubMed  Google Scholar 

  13. Prasadam I, van Gennip S, Friis T, Shi W, Crawford R, Xiao Y (2010) ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts. Arthritis Rheum 62:1349–1360

    Article  CAS  PubMed  Google Scholar 

  14. Jaiprakash A, Prasadam I, Feng JQ, Liu Y, Crawford R, Xiao Y (2012) Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis. Int J Biol Sci 8:406–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ritchie W, Theodule FX, Gautheret D (2008) Mireval: a web tool for simple microRNA prediction in genome sequences. Bioinformatics 24:1394–1396

    Article  CAS  PubMed  Google Scholar 

  16. Sanchez C, Deberg MA, Bellahcene A, Castronovo V, Msika P, Delcour JP, Crielaard JM, Henrotin YE (2008) Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum 58:442–455

    Article  CAS  PubMed  Google Scholar 

  17. Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, Zhang Y (2012) MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol 8:212–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De-Ugarte L, Yoskovitz G, Balcells S, Guerri-Fernandez R, Martinez-Diaz S, Mellibovsky L, Urreizti R, Nogues X, Grinberg D, Garcia-Giralt N, Diez-Perez A (2015) MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Med Genom 8:75

    Article  Google Scholar 

  19. Chen X, Gu S, Chen BF, Shen WL, Yin Z, Xu GW, Hu JJ, Zhu T, Li G, Wan C, Ouyang HW, Lee TL, Chan WY (2015) Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 53:239–250

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J (2011) Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 26:1953–1963

    Article  CAS  PubMed  Google Scholar 

  21. Fang S, Deng Y, Gu P, Fan X (2015) MicroRNAs regulate bone development and regeneration. Int J Mol Sci 16:8227–8253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Prasadam I, Mao X, Shi W, Crawford R, Xiao Y (2013) Combination of MEK-ERK inhibitor and hyaluronic acid has a synergistic effect on anti-hypertrophic and pro-chondrogenic activities in osteoarthritis treatment. J Mol Med (Berl) 91:369–380

    Article  CAS  Google Scholar 

  23. Prasadam I, Mao X, Wang Y, Shi W, Crawford R, Xiao Y (2012) Inhibition of p38 pathway leads to OA-like changes in a rat animal model. Rheumatol (Oxf) 51:813–823

    Article  CAS  Google Scholar 

  24. Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin YE (2005) Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, -1beta and oncostatin M pre-treated non-sclerotic osteoblasts. Osteoarthr Cartil 13:979–987

    Article  CAS  PubMed  Google Scholar 

  25. Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin YE (2005) Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthr Cartil 13:988–997

    Article  CAS  PubMed  Google Scholar 

  26. Kinose Y, Sawada K, Nakamura K, Sawada I, Toda A, Nakatsuka E, Hashimoto K, Mabuchi S, Takahashi K, Kurachi H, Lengyel E, Kimura T (2015) The hypoxia-related microRNA miR-199a-3p displays tumor suppressor functions in ovarian carcinoma. Oncotarget 6:11342–11356

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu D, Huang HJ, He CN, Wang KY (2013) MicroRNA-199a-3p regulates endometrial cancer cell proliferation by targeting mammalian target of rapamycin (mTOR). Int J Gynecol Cancer 23:1191–1197

    Article  PubMed  Google Scholar 

  28. Renthal NE, Williams KC, Mendelson CR (2013) MicroRNAs–mediators of myometrial contractility during pregnancy and labour. Nat Rev Endocrinol 9:391–401

    Article  CAS  PubMed  Google Scholar 

  29. Gonsalves CS, Kalra VK (2010) Hypoxia-mediated expression of 5-lipoxygenase-activating protein involves HIF-1alpha and NF-kappaB and microRNAs 135a and 199a-5p. J Immunol 184:3878–3888

    Article  CAS  PubMed  Google Scholar 

  30. Wang C, Song B, Song W, Liu J, Sun A, Wu D, Yu H, Lian J, Chen L, Han J (2011) Underexpressed microRNA-199b-5p targets hypoxia-inducible factor-1alpha in hepatocellular carcinoma and predicts prognosis of hepatocellular carcinoma patients. J Gastroenterol Hepatol 26:1630–1637

    Article  CAS  PubMed  Google Scholar 

  31. Saunders LR, Sharma AD, Tawney J, Nakagawa M, Okita K, Yamanaka S, Willenbring H, Verdin E (2010) miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2:415–431

    Article  CAS  Google Scholar 

  32. Wijesekara N, Zhang LH, Kang MH, Abraham T, Bhattacharjee A, Warnock GL, Verchere CB, Hayden MR (2012) miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 61:653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Margue C, Philippidou D, Reinsbach SE, Schmitt M, Behrmann I, Kreis S (2013) New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion. PLoS One 8:e73473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mazar J, DeYoung K, Khaitan D, Meister E, Almodovar A, Goydos J, Ray A, Perera RJ (2010) The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLoS One 5:e13779

    Article  PubMed  PubMed Central  Google Scholar 

  35. Qin J, Luo M (2014) MicroRNA-221 promotes colorectal cancer cell invasion and metastasis by targeting RECK. FEBS Lett 588:99–104

    Article  CAS  PubMed  Google Scholar 

  36. Pallante P, Battista S, Pierantoni GM, Fusco A (2014) Deregulation of microRNA expression in thyroid neoplasias. Nat Rev Endocrinol 10:88–101

    Article  CAS  PubMed  Google Scholar 

  37. Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S, Chen PH, Li S, Fletcher AL, Yokoyama S, Scott KL, Garraway LA, Song JS, Granter SR, Turley SJ, Fisher DE, Novina CD (2010) Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell 40:841–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nasreen N, Khodayari N, Kaye F, Jantz M, Sriram PS, Mohammed KA (2013) MicroRNA-590 regulates tumor growth by targeting receptor Epha2 in malignant pleural mesothelioma In: American Thoracic Society international conference abstracts

  39. Mo M, Peng F, Wang L, Peng L, Lan G, Yu S (2013) Roles of mitochondrial transcription factor A and microRNA-590-3p in the development of bladder cancer. Oncol Lett 6:617–623

    PubMed  PubMed Central  Google Scholar 

  40. Miranda PJ, Vimalraj S, Selvamurugan N (2015) A feedback expression of microRNA-590 and activating transcription factor-3 in human breast cancer cells. Int J Biol Macromol 72:145–150

    Article  CAS  PubMed  Google Scholar 

  41. Mueller DW, Rehli M, Bosserhoff AK (2009) miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol 129:1740–1751

    Article  CAS  PubMed  Google Scholar 

  42. Xiang X, Zhao J, Xu G, Li Y, Zhang W (2011) mTOR and the differentiation of mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 43:501–510

    Article  CAS  Google Scholar 

  43. Previdi S, Abbadessa G, Dalo F, France DS, Broggini M (2012) Breast cancer-derived bone metastasis can be effectively reduced through specific c-MET inhibitor tivantinib (ARQ 197) and shRNA c-MET knockdown. Mol Cancer Ther 11:214–223

    Article  CAS  PubMed  Google Scholar 

  44. Maes C, Carmeliet G, Schipani E (2012) Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol 8:358–366

    Article  CAS  PubMed  Google Scholar 

  45. Cohen-Kfir E, Artsi H, Levin A, Abramowitz E, Bajayo A, Gurt I, Zhong L, D’Urso A, Toiber D, Mostoslavsky R, Dresner-Pollak R (2011) Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology 152:4514–4524

    Article  CAS  PubMed  Google Scholar 

  46. Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, Choung S, Kim YJ, Choi YC (2008) MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem 283:18158–18166

    Article  CAS  PubMed  Google Scholar 

  47. Liu G, Detloff MR, Miller KN, Santi L, Houle JD (2012) Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol 233:447–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duan Z, Choy E, Harmon D, Liu X, Susa M, Mankin H, Hornicek F (2011) MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther 10:1337–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, Pollutri D, Croce CM, Bolondi L, Gramantieri L (2010) MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 70:5184–5193

    Article  CAS  PubMed  Google Scholar 

  50. Pantovic A, Krstic A, Janjetovic K, Kocic J, Harhaji-Trajkovic L, Bugarski D, Trajkovic V (2013) Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone 52:524–531

    Article  CAS  PubMed  Google Scholar 

  51. Ma J, Li M, Hock J, Yu X (2012) Hyperactivation of mTOR critically regulates abnormal osteoclastogenesis in neurofibromatosis Type 1. J Orthop Res 30:144–152

    Article  CAS  PubMed  Google Scholar 

  52. Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saito M, Sasho T, Yamaguchi S, Ikegawa N, Akagi R, Muramatsu Y, Mukoyama S, Ochiai N, Nakamura J, Nakagawa K, Nakajima A, Takahashi K (2012) Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model. Osteoarthr Cartil 20:1574–1582

    Article  CAS  PubMed  Google Scholar 

  54. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  CAS  PubMed  Google Scholar 

  55. Lavery K, Swain P, Falb D, Alaoui-Ismaili MH (2008) BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 283:20948–20958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kawakami A, Eguchi K, Matsuoka N, Tsuboi M, Koji T, Urayama S, Fujiyama K, Kiriyama T, Nakashima T, Nakane PK, Nagataki S (1997) Fas and Fas ligand interaction is necessary for human osteoblast apoptosis. J Bone Miner Res 12:1637–1646

    Article  CAS  PubMed  Google Scholar 

  57. Liu X, Bruxvoort KJ, Zylstra CR, Liu J, Cichowski R, Faugere MC, Bouxsein ML, Wan C, Williams BO, Clemens TL (2007) Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc Natl Acad Sci USA 104:2259–2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zambuzzi WF, Yano CL, Cavagis AD, Peppelenbosch MP, Granjeiro JM, Ferreira CV (2009) Ascorbate-induced osteoblast differentiation recruits distinct MMP-inhibitors: RECK and TIMP-2. Mol Cell Biochem 322:143–150

    Article  CAS  PubMed  Google Scholar 

  59. Thiele F, Cohrs CM, Przemeck GK, Wurst W, Fuchs H, de Angelis MH (2013) In vitro analysis of bone phenotypes in Col1a1 and Jagged1 mutant mice using a standardized osteoblast cell culture system. J Bone Miner Metab 31(3):293–303

    Article  CAS  PubMed  Google Scholar 

  60. Erlebacher A, Filvaroff EH, Ye JQ, Derynck R (1998) Osteoblastic responses to TGF-beta during bone remodeling. Mol Biol Cell 9:1903–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kwan Tat S, Pelletier JP, Amiable N, Boileau C, Lajeunesse D, Duval N, Martel-Pelletier J (2008) Activation of the receptor EphB4 by its specific ligand ephrin B2 in human osteoarthritic subchondral bone osteoblasts. Arthritis Rheum 58:3820–3830

    Article  PubMed  Google Scholar 

  62. Zhang R, Fang H, Chen Y, Shen J, Lu H, Zeng C, Ren J, Zeng H, Li Z, Chen S, Cai D, Zhao Q (2012) Gene expression analyses of subchondral bone in early experimental osteoarthritis by microarray. PLoS One 7:e32356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, Rodan GA, le Duong T (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50:1193–1206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge the partial funding support from Arthritis Australia. J Batra is supported by an NHMRC Career Development Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indira Prasadam.

Ethics declarations

Conflict of Interest

Indira Prasadam, Jyotsna Batra, Samuel Perry, Wenyi Gu, Ross Crawford and Yin Xiao declare that they have no conflict of interest associated with this study.

Human and Animal Rights and Informed Consent

All protocols were reviewed and approved by the Institutional Animal Care and Use Committee at Queensland University of Technology.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasadam, I., Batra, J., Perry, S. et al. Systematic Identification, Characterization and Target Gene Analysis of microRNAs Involved in Osteoarthritis Subchondral Bone Pathogenesis. Calcif Tissue Int 99, 43–55 (2016). https://doi.org/10.1007/s00223-016-0125-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0125-7

Keywords

Navigation