Skip to main content
Log in

Equivalent descriptions of the loewner energy

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Loewner’s equation provides a way to encode a simply connected domain or equivalently its uniformizing conformal map via a real-valued driving function of its boundary. The first main result of the present paper is that the Dirichlet energy of this driving function (also known as the Loewner energy) is equal to the Dirichlet energy of the log-derivative of the (appropriately defined) uniformizing conformal map. This description of the Loewner energy then enables to tie direct links with regularized determinants and Teichmüller theory: We show that for smooth simple loops, the Loewner energy can be expressed in terms of the zeta-regularized determinants of a certain Neumann jump operator. We also show that the family of finite Loewner energy loops coincides with the Weil–Petersson class of quasicircles, and that the Loewner energy equals to a multiple of the universal Liouville action introduced by Takhtajan and Teo, which is a Kähler potential for the Weil–Petersson metric on the Weil–Petersson Teichmüller space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alvarez, O.: Theory of strings with boundaries: fluctuations, topology and quantum geometry. Nuclear Phys. B 216, 1 (1983)

    Article  MathSciNet  Google Scholar 

  2. Athreya, K.B., Lahiri, S.N.: Measure Theory and Probability Theory. Springer Texts in Statistics (2006)

  3. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin (2004)

    MATH  Google Scholar 

  4. Bowick, M.J., Rajeev, S.: The holomorphic geometry of closed bosonic string theory and Diff\((S^1) / S^1\). Nucl. Phys. B 293, 348–384 (1987)

    Google Scholar 

  5. Bowick, M.J., Rajeev, S.: String theory as the Kähler geometry of loop space. Phys. Rev. Lett. 58, 535–538 (1987)

    Article  MathSciNet  Google Scholar 

  6. Burghelea, D., Friedlander, L., Kappeler, T.: Meyer–Vietoris type formula for determinants of elliptic differential operators. J. Funct. Anal. 107, 1 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burghelea, D., Friedlander, L., Kappeler, T., McDonald, P.: On the functional \(\log \det \) and related Flows on the space of closed embedded curves on \(S^2\). J. Funct. Anal. 120, 2 (1994)

    MATH  Google Scholar 

  8. Cui, G.: Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces. Sci. China Ser. A 43, 3 (2000)

    Article  MATH  Google Scholar 

  9. De Branges, L.: A proof of theBieberbach conjecture. Acta Math. 154, 1–2 (1985)

    Article  MathSciNet  Google Scholar 

  10. Dubédat, J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22, 4 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duren, P.L.: Univalent Functions, vol. 259. Springer Grundlehren der mathematischen Wissenschaften (1983)

  12. Friz, P., Shekhar, A.: On the existence of SLE trace: finite energy drivers and non constant \(\kappa \). Probab. Theory Relat. Fields 169, 1–2 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge Univ. Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  14. Guo, H.: Integrable Teichmüller spaces. Sci. China Ser. A 43, 1–2 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Hawking, S.W.: Zeta function regularization of path integrals in curved spacetime. Commun. Math. Phys. 55(2), 133–148 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kager, W., Nienhuis, B., Kadanoff, L.: Exact solutions for Loewner evolutions. J. Stat. Phys. 115(3–4), 805–822 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, Y.: Mayer–Vietoris formula for determinants of elliptic operators of Laplace–Beltrami type (after Burghelea, Friedlander and Kappeler). Differ. Geom. Appl. 7, 4 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lawler, G., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1), 939–995 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Lehto, O.: Univalent Functions and Teichmüller Spaces. Springer, Berlin (2012)

    MATH  Google Scholar 

  20. Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  21. Lind, J., Tran, H.: Regularity of Loewner Curves. Indiana Univ. Math. J. 65(5), 1675–1712 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Loewner, K.: Untersuchungen über schlichte konforme abbildungen des einheitskreises. i. Math. Ann. 89, 1–2 (1923)

    Article  MathSciNet  Google Scholar 

  23. Marshall, D., Rohde, S.: Convergence of a variant of the zipper algorithm for conformal mapping. SIAM J. Numer. Anal. 45, 6 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nag, S.: The Complex Analytic Theory of Teichmüller Spaces. Wiley-Interscience, Hoboken (1998)

    MATH  Google Scholar 

  25. Nag, S., Verjovsky, A.: Diff\((S^1)\) and the Teichmüller Spaces Commun. Math. Phys. 130(1), 123–138 (1990)

  26. Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80, 1 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Polyakov, A.M.: Quantum geometry of Bosonic strings. Phys. Lett. 103, B (1981)

    MathSciNet  Google Scholar 

  28. Pommerenke, C.: On Löwner differential equation. Michigan Math. J. 13, 4 (1966)

    Google Scholar 

  29. Ray, D.B., Singer, I.M.: \(R\)-Torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 2 (1971)

    MathSciNet  MATH  Google Scholar 

  30. Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math. 161, Number 2 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rohde, S., Wang, Y.: The Loewner energy of loops and regularity of driving functions. Int. Math. Res. Not. IMRN (2019). https://doi.org/10.1093/imrn/rnz071

  32. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 1 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schramm, O., Sheffield, S.: Harmonic explorer and its convergence to \(\text{ SLE }_4\). Ann. Probab 33, 6 (2005)

    MATH  Google Scholar 

  34. Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann. Probab. 44, 5 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Shekhar, A., Tran, H., Wang, Y.: Remarks on Loewner chains driven by finite variation functions. Ann. Acad. Sci. Fenn. Math. 44, 311–327 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen, Y.: Weil–Petersson Teichmüller space. Am. J. Math. 140, 4 (2018)

    Article  MATH  Google Scholar 

  37. Shen, Y., Tang, S.: Weil–Petersson Teichmüller space II, preprint (2018). https://arxiv.org/abs/1801.10361

  38. Shen, Y., Tang, S., Wu, L.: Weil–Petersson and little Teichmüller space on the real line. Ann. Acad. Sci. Fenn. Math. 43(2), 935–943 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172, 2 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Takhtajan, L.A., Teo, L.-P.: Weil-Petersson metric on the universal Teichmuller space. Mem. Am. Math. Soc. 183(861) (2006)

    Article  MATH  Google Scholar 

  41. Van den Berg, M.: On the asymptotics of the heat equation and bounds on traces associated with the Dirichlet Laplacian. J. Funct. Anal. 71, 2 (1987)

    MathSciNet  Google Scholar 

  42. Wang, Y.: The energy of a deterministic Loewner chain: reversibility and interpretation via \(\text{ SLE }_{0+}\). J. Eur. Math. Soc. (2019). https://doi.org/10.4171/JEMS/876

    Article  MathSciNet  MATH  Google Scholar 

  43. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71(4), 441–479 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  44. Witten, E.: Coadjoint orbits of the Virasoro group. Comm. Math. Phys. 114, 1 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wong, C.: Smoothness of Loewner Slits. Trans. Am. Math. Soc. 366(3), 1475–1496 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67, 1 (1936)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Wendelin Werner for numerous inspiring discussions as well as his help during the preparation of the manuscript. I also thank Steffen Rohde, Yuliang Shen, Lee-Peng Teo, Thomas Kappeler, Alexis Michelat and Tristan Rivière for helpful discussions, and the referee for many constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Swiss National Science Foundation Grant # 175505.

Geodesic curvature formula

Geodesic curvature formula

As many of our proofs rely on the following formula on the variation of the geodesic curvature under a Weyl-scaling, we sketch a short proof for readers’ convenience.

Lemma A.1

Let \((D, g_0)\) be a surface with smooth boundary \(\gamma = \partial D\). If \(\sigma \in C^{\infty } (D, \mathbb {R})\) and \(g = e^{2 \sigma } g_0\), the geodesic curvature of \( \partial D\) under the metric g satisfies

$$\begin{aligned} k_g = e^{-\sigma } \left( k_0 + \partial _{n_0} \sigma \right) , \end{aligned}$$

where \(k_0\) is the geodesic curvature under the metric \(g_0\), and \(\partial _{n_0}\) the outer-normal derivative with respect to to \(g_0\).

Proof

We parameterize \(\gamma \) by arclength in g and let N be the outer normal vector field on \(\gamma \), namely \(g ({\dot{\gamma }} , {\dot{\gamma }} ) = g (N, N) \equiv 1\). We have that \({\dot{\gamma }}_0 := e^{\sigma } {\dot{\gamma }} \) and \(N_0 : = e^{\sigma } N\) are unit vectors under \(g_0\). The geodesic curvature of \(\partial D\) is given by

$$\begin{aligned} k_g = g \left( \nabla _{g,{\dot{\gamma }} }{\dot{\gamma }} , - N \right) . \end{aligned}$$

The covariant derivative \(\nabla _g\) is related to the covariant derivative \(\nabla _0\) under \(g_0\) by

$$\begin{aligned} \nabla _{g, X} Y = \nabla _{0, X} Y + X(\sigma ) Y + Y(\sigma ) X - g_0 (X,Y) \nabla _0 \sigma . \end{aligned}$$

Therefore,

$$\begin{aligned} \nabla _{g,{\dot{\gamma }}}{\dot{\gamma }}&= \nabla _{0, {\dot{\gamma }} } {\dot{\gamma }} + 2g_0 ({\dot{\gamma }}, \nabla _0 \sigma ) {\dot{\gamma }} - g_0 ({\dot{\gamma }} ,{\dot{\gamma }}) \nabla _0 \sigma \\&= e^{-2\sigma } \nabla _{0, {\dot{\gamma }}_0 } {\dot{\gamma }}_0 + 2g_0 ({\dot{\gamma }}, \nabla _0 \sigma ) {\dot{\gamma }} - e^{-2\sigma } \nabla _0 \sigma . \end{aligned}$$

Since \(g ({\dot{\gamma }}, N) = 0\), we have

$$\begin{aligned} g \left( \nabla _{g,{\dot{\gamma }} }{\dot{\gamma }}, - N \right)&= e^{2\sigma } g_0 \left( e^{-2\sigma } (\nabla _{0, {\dot{\gamma }}_0 } {\dot{\gamma }}_0 - \nabla _0 \sigma ), -e^{-\sigma } N_0\right) \\&= e^{-\sigma } (k_0 + \partial _{n_0} \sigma ) \end{aligned}$$

as claimed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. Equivalent descriptions of the loewner energy. Invent. math. 218, 573–621 (2019). https://doi.org/10.1007/s00222-019-00887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-019-00887-0

Mathematics Subject Classification

Navigation