Skip to main content

Advertisement

Log in

Nociception induces a differential presynaptic modulation of the synaptic efficacy of nociceptive and proprioceptive joint afferents

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

A previous study has indicated that during the state of central sensitization induced by the intradermic injection of capsaicin, there is a gradual facilitation of the dorsal horn neuronal responses produced by stimulation of the high-threshold articular afferents that is counteracted by a concurrent increase of descending inhibitory actions. Since these changes occurred without significantly affecting the responses produced by stimulation of the low-threshold articular afferents, it was suggested that the capsaicin-induced descending inhibition included a preferential presynaptic modulation of the synaptic efficacy of the slow conducting nociceptive joint afferents (Ramírez-Morales et al., Exp Brain Res 237:1629–1641, 2019). The present study was aimed to investigate more directly the contribution of presynaptic mechanisms in this descending control. We found that in the barbiturate anesthetized cat, stimulation of the high-threshold myelinated afferents in the posterior articular nerve (PAN) produces primary afferent hyperpolarization (PAH) in the slow conducting (25–35 m/s) and primary afferent depolarization (PAD) in the fast conducting (40–50 m/s) articular fibers. During the state of central sensitization induced by capsaicin, there is a supraspinally mediated shift of the autogenic PAH to PAD that takes place in the slow conducting fibers, basically without affecting the autogenic PAD generated in the fast conducting afferents. It is suggested that the change of presynaptic facilitation to presynaptic inhibition induced by capsaicin on the slow articular afferents is part of an homeostatic process aimed to keep the nociceptive-induced neuronal activity within manageable limits while preserving the proprioceptive information required for proper control of movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Basbaum A, Bautista D, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxendale RH, Ferrell WR (1985) Ascending and descending effects of joint afferent discharge on forelimb and hindlimb flexion reflex excitability in decerebrate cats. Brain Res 332:394–396

    Article  CAS  PubMed  Google Scholar 

  • Bian D, Ossipov MH, Zhong C, Malan P, Porreca F (1998) Tactile allodynia, but not thermal hyperalgesia, of the hindlimbs is blocked by spinal transection in rats with nerve injury. Neurosci Lett 241:79–82

    Article  CAS  PubMed  Google Scholar 

  • Bityukov S, Maksimushkina A, Smirnova V (2016) Comparison of histograms in physical research. Nucl Energy Technol 2:108–113

    Article  Google Scholar 

  • Bonin RP, De Koninck Y (2014) A spinal analog of memory reconsolidation enables reversal of hyperalgesia. Nat Neurosci 17:1043–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo-Hernández M, Corleto JA, Barragán-Iglesias P, González-Ramírez R, Pineda-Farias JB, Felix R, Calcutt NA, Delgado-Lezama R, Marsala M, Granados-Soto V (2016) The α5 subunit containing GABAA receptors contribute to chronic pain. Pain 157:613–626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burgess PR, Clark FJ (1969) Characteristics of knee joint receptors in the cat. J Physiol 203:317–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess PR, Petit D, Warren RM (1968) Receptor types in cat hairy skin supplied by myelinated fibers. J Neurophysiol 31:833–848

    Article  CAS  PubMed  Google Scholar 

  • Burke RE, Rudomin P (1977) Spinal neurons and synapses. In: Kandel ER (ed) Handbook of physiology. The nervous system. Sect I, vol I, part 2. American Physiological Society, Bethesda, pp 877–944

  • Cervero F, Schaible HG, Schmidt RF (1991) Tonic descending inhibition of spinal cord neurons driven by joint afferents in normal cats and in cats with an inflamed knee joint. Exp Brain Res 83:675–678

    Article  CAS  PubMed  Google Scholar 

  • Cervero F, Laird JMA, García-Nicas E (2003) Secondary hyperalgesia and presynaptic inhibition: an update. Eur J Pain 7:345–351

    Article  PubMed  Google Scholar 

  • Contreras-Hernández E, Chávez D, Hernández E, Velázquez E, Reyes P, Béjar J, Martín M, Cortés U, Glusman S, Rudomin P (2018) Supraspinal modulation of neuronal synchronization by nociceptive stimulation induces an enduring reorganization of dorsal horn neuronal connectivity. J Physiol 596:1747–1776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danziger N, Weil-Fugazza J, Le Bars D, Bouhassira D (2001) Stage-dependent changes in the modulation of spinal nociceptive neuronal activity during the course of inflammation. Eur J Neurosci 13:230–240

    Article  CAS  PubMed  Google Scholar 

  • Dawson GD, Merrill EG, Wall PD (1970) Dorsal root potentials produced by stimulation of fine afferents. Science 167:1385–1387

    Article  Google Scholar 

  • Delgado-Lezama R, Loeza-Alcocer E, Andrés C, Aguilar J, Guertin PA, Felix R (2013) Extrasynaptic GABAA receptors in the brainstem and spinal cord: structure and function. Curr Pharm Des 19:4485–4497

    Article  CAS  PubMed  Google Scholar 

  • Djouhri L, Lawson S (2004) Aβ-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Rev 46:131–145

    Article  PubMed  Google Scholar 

  • Eccles JC, Krnjevic K (1959) Potential changes recorded inside primary afferent fibers within the spinal cord. J Physiol 149:250–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eguibar JR, Quevedo J, Rudomin P (1997) Selective cortical and segmental control of primary afferent depolarization of single muscle afferents in the cat spinal cord. Exp Brain Res 113:411–430

    Article  CAS  PubMed  Google Scholar 

  • Ferrell WR (1980) The adequacy of stretch receptors in the cat knee joint for signaling joint angle throughout a full range of movement. J Physiol 299:85–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrell WR, Baxendale RH, CarnachanI C, Hart K (1985) The influence of joint afferent discharge on locomotion, proprioception and activity in conscious cats. Brain Res 347:41–48

    Article  CAS  PubMed  Google Scholar 

  • Franz DN, Iggo A (1968) Dorsal root potentials and ventral root reflexes evoked by nonmyelinated fibers. Science 162:1140–1142

    Article  CAS  PubMed  Google Scholar 

  • Globe D, Bayliss MS, Harrison DJ (2009) The impact of itch symptoms in psoriasis: results from physician interviews and patient focus groups. Health Qual Life Outcomes 7:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Grundy D (2015) Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. J Physiol 593:2547–2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes HB, Chang Y, Hochman S (2012) Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion. J Neurophysiol 107:3168–3180

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinricher MM, Babaro NM, Fields HL (1989) Putative nociceptive modulating neurons in the rostral ventromedial medulla of the rat: firing of on- and off-cells is related to nociceptive responsiveness. Somatosens Mot Res 6:427–439

    Article  CAS  PubMed  Google Scholar 

  • Heinricher M, Tavares I, Leith J, Lumb B (2009) Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev 60:214–225

    Article  CAS  PubMed  Google Scholar 

  • Helliwell PS, Taylor WJ (2005) Classification and diagnostic criteria for psoriatic arthritis. Ann Rheum Dis 64:ii3–ii8

    Article  PubMed  PubMed Central  Google Scholar 

  • Jankowska E, Roberts W (1972) An electrophysiological demonstration of the axonal projections of single spinal interneurones in the cat. J Physiol 222:597–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankowska E, Riddell JS, McCrea DA (1993) Primary afferent depolarization of myelinated fibers in the joint and interosseous nerves of the cat. J Physiol 466:115–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kauppila T, Kontinen VK, Pertovaara A (1998) Influence of spinalization on spinal withdrawal reflex responses varies depending on the submodality of the test stimulus and the experimental pathophysiological condition in the rat. Brain Res 797:234–242

    Article  CAS  PubMed  Google Scholar 

  • Lafleur J, Zytniki D, Horcholle-Bossavit G, Jami L (1992) Depolarization of Ib afferent axons in the cat spinal cord during homonymous muscle contraction. J Physiol 445:345–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laird J, Cervero F (1990) Tonic descending influences on the receptive field properties of nociceptive neurons in the sacral spinal cord of the rat. J Neurophysiol 63:1022–1032

    Article  CAS  PubMed  Google Scholar 

  • Le Bars D, Dickenson AH, Besson JM (1979a) Diffuse noxious inhibitory controls (DNIC). I-Effects on dorsal horn convergent neurones in the rat. Pain 6:283–304

    Article  PubMed  Google Scholar 

  • Le Bars D, Dickenson AH, Besson JM (1979b) Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain 6:305–327

    Article  PubMed  Google Scholar 

  • Li Y, Hari K, Lucas-Osma AM, Fenrich KK, Bennett DJ, Hammar I, Jankowska E (2020) Branching points of primary afferent fibers are vital for the modulation of fiber excitability by epidural DC polarization and by GABA in the rat spinal cord. J Neurophysiol 124:49–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Zou X, Willis WD (2000) Aδ and C primary aferents convey dorsal root refexes after intradermal injection of capsaicin in rats. J Neurophysiol 84:2695–2698

    Article  CAS  PubMed  Google Scholar 

  • Lomelí J, Quevedo J, Linares P, Rudomin P (1998) Local control of information flow in segmental and ascending collaterals of single afferents. Nature 395:600–604

    Article  PubMed  Google Scholar 

  • Lomelí J, Castillo L, Linares P, Rudomin P (2000) Effects of PAD on conduction of action potentials within segmental and ascending branches of single muscle afferents in the cat spinal cord. Exp Brain Res 135:204–214

    Article  PubMed  Google Scholar 

  • Madrid J, Alvarado J, Dutton H, Rudomin P (1979) A method for the dynamic continuous estimation of excitability changes of single fiber terminals in the central nervous system. Neurosci Lett 11:253–258

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Béjar J, Esposito G, Chávez D, Contreras-Hernández E, Glusman S, Cortés U, Rudomín P (2017) Markovian analysis of the sequential behavior of the spontaneous spinal cord dorsum potentials induced by acute nociceptive stimulation in the anesthetized cat. Front Comput Neurosci. https://doi.org/10.3389/fncom.2017.00032

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin M, Béjar J, Chávez D, Ramírez-Morales A, Hernández E, Moreno L, Contreras-Hernández E, Glusman S, Cortés U, Rudomin P (2019) Supraspinal shaping of adaptive transitions in the state of functional connectivity between segmentally distributed dorsal horn neuronal populations in response to nociception and antinociception. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2019.00047

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntyre AK, Proske U, Tracey DJ (1978) Afferent fibres from muscle receptors in the posterior nerve of the cat’s knee joint. Exp Brain Res 33:415–424

    Article  CAS  PubMed  Google Scholar 

  • Meléndez-Gallardo J, Eblen-Zajjur A (2016) Noxious mechanical heterotopic stimulation induces inhibition of the spinal dorsal horn neuronal network: analysis of spinal somatosensory-evoked potentials. Neurol Sci 37:1491–1497

    Article  PubMed  Google Scholar 

  • Melzack R (1990) Phantom limbs and the concept of a neuromatrix. TINS 13:88–92

    CAS  PubMed  Google Scholar 

  • Mendell LM, Wall PD (1964) Presynaptic facilitation: a role for fine afferent fibers. J Physiol 174:274–294

    Article  Google Scholar 

  • National Research Council (2010) Guide for the care and use of laboratory animals. The National Academies Press, Washington, D.C.

    Google Scholar 

  • Plamenov N, Moreno L, Álvarez B, Ramírez A, Chávez D, Hernández E, Glusman S, Rudomin P (2018) Nociceptive stimulation produces non-random (structured) changes in the timing and direction of the information flowing between the dorsal horn neurons and the brainstem nuclei. Abs Soc Neurosci 389:18

    Google Scholar 

  • Porreca F, Ossipov MH, Gebhart GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25:319–325

    Article  CAS  PubMed  Google Scholar 

  • Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92:1651–1697

    Article  CAS  PubMed  Google Scholar 

  • Quevedo J, Eguibar JR, Jiménez I, Schmidt RF, Rudomin P (1993) Primary afferent depolarization of muscle afferents elicited by stimulation of joint afferents in cats with intact neuraxis and during reversible spinalization. J Neurophysiol 70:1899–1910

    Article  CAS  PubMed  Google Scholar 

  • Quevedo J, Eguibar JR, Jiménez I, Rudomin P (1995) Raphe magnus and reticulospinal actions on primary afferent depolarization of group I muscle afferents in the cat. J Physiol 482:623–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Morales A, Hernández E, Rudomín P (2011) During acute capsaicin skin inflammation, increased descending control induces unmasking of autogenetic PAD in articular afferents. Abstr Soc Neurosci 804:13

    Google Scholar 

  • Ramírez-Morales A, Hernández E, Rudomín P (2014) Intradermic capsaicin increases autogenic and heterogenic PAD in Aδ articular afferents as part of a control mechanism that regulates information flow in nociceptive afferents. Abstr Soc Neurosci 627:04

    Google Scholar 

  • Ramírez-Morales A, Hernández E, Rudomin P (2019) Descending inhibition selectively counteracts the capsaicin-induced facilitation of dorsal horn neurons activated by joint nociceptive afferents. Exp Brain Res 237:1629–1641

    Article  PubMed  Google Scholar 

  • Ren K, Dubner R (1996) Enhanced descending modulation of nociception in rats with persistent hindpaw inflammation. J Neurophysiol 76:3025–3037

    Article  CAS  PubMed  Google Scholar 

  • Riddell JS, Jankowska E, Huber J (1995) Organization of neuronal systems mediating presynaptic inhibition of group II muscle afferents in the cat. J Physiol 483:443–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudomin P, Hernández E (2008) Changes in synaptic effectiveness of myelinated joint afferents during capsaicin-induced inflammation of the footpad in the anesthetized cat. Exp Brain Res 187:71–84

    Article  CAS  PubMed  Google Scholar 

  • Rudomin P, Lomelí J (2007) Patterns of primary afferent depolarization of segmental and ascending intraspinal collaterals of single joint afferents in the cat. Exp Brain Res 176:119–131

    Article  CAS  PubMed  Google Scholar 

  • Rudomin P, Schmidt RF (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129:1–37

    Article  CAS  PubMed  Google Scholar 

  • Rudomin P, Núñez R, Madrid J, Burke RE (1974) Primary afferent hyperpolarization and presynaptic facilitation of Ia afferent terminals induced by large cutaneous fibers. J Neurophysiol 37:413–429

    Article  CAS  PubMed  Google Scholar 

  • Rudomin P, Solodkin M, Jiménez I (1986) PAD and PAH response patterns of group Ia- and Ib-fibers to cutaneous and descending inputs in the cat spinal cord. J Neurophysiol 56:987–1006

    Article  CAS  PubMed  Google Scholar 

  • Rudomin P, Lomelí J, Quevedo J (2004) Differential modulation of primary afferent depolarization of segmental and ascending intraspinal collaterals of single muscle afferents in the cat spinal cord. Exp Brain Res 156:377–391

    Article  CAS  PubMed  Google Scholar 

  • Rudomin P, Hernández E, Lomelí J (2007) Tonic and phasic differential GABAergic inhibition of synaptic actions of joint afferents in the cat. Exp Brain Res 176:98–118

    Article  CAS  PubMed  Google Scholar 

  • Sakurada T, Komatsu T, Moriyama T, Sasaki M, Sanai K, Orito T, Sakurada C, Sakurada S (2005) Effects of intraplantar injections of nociception and its N-terminal fragments on nociceptive and desensitized responses induced by capsaicin in mice. Peptides 26:2505–2512

    Article  CAS  PubMed  Google Scholar 

  • Schaible HG, Neugebauer V, Cervero F, Schmidt RF (1991) Changes in tonic descending inhibition of spinal neurons with articular input during the development of acute arthritis in the cat. J Neurophysiol 66:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Seki K, Perlmutter S, Fetz E (2003) Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat Neurosci 6:1309–1316

    Article  CAS  PubMed  Google Scholar 

  • Sluka KA, Rees H, Westlund KN, Willis WD (1995) Fiber types contributing to dorsal root reflexes induced by joint inflammation in cats and monkeys. J Neurophysiol 74:981–989

    Article  CAS  PubMed  Google Scholar 

  • Sorkin LS, McAdoo DJ (1993) Aminoacids and serotonin are released into the lumbar spinal cord of the anesthetized cat following intradermal capsaicin injections. Brain Res 607:89–98

    Article  CAS  PubMed  Google Scholar 

  • Tavares I, Lima D (2007) From neuroanatomy to gene therapy: searching for new ways to manipulate the supraspinal endogenous pain modulatory system. J Anat 211:261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanueva L (2009) Diffuse noxious inhibitory control (DNIC) as a tool for exploring dysfunction of endogenous pain modulatory systems. Pain 143:161–162

    Article  PubMed  Google Scholar 

  • Vyklicky L, Rudomin P, Zajac FE, Burke RE (1969) Primary afferent depolarization evoked by a painful stimulus. Science 165:184–186

    Article  CAS  PubMed  Google Scholar 

  • Wall P, Johnson A (1958) Changes associated with post-tetanic potentiation of a monosynaptic reflex. J Neurophysiol 21:148–158

    Article  CAS  PubMed  Google Scholar 

  • Wall P, Werman R (1976) The physiology and anatomy of long ranging afferent fibers within the spinal cord. J Physiol 255:321–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis WD (1999) Dorsal root potentials and dorsal root reflexes: a double-edged sword. Exp Brain Res 124:395–421

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman AL, Kovatsis EM, Pozsgai RY, Tasnim A, Zhang Q, Ginty DD (2019) Distinct modes of presynaptic inhibition of cutaneous afferents and their functions in behavior. Neuron 102:420–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann M (1965) Dorsal root potentials after C-fiber stimulation. Science 160:896–898

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. E. Jankowska and S. Glusman for their  comments to an earlier version of this paper, to C León for technical assistance and to E Rosales for her excellent secretarial support.

Funding

This work was partly supported CONACyT grants 50900 and 255548. AR was holder of a CONACyT fellowship for doctoral studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rudomin.

Additional information

Communicated by Winston D. Byblow.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Morales, A., Hernández, E. & Rudomin, P. Nociception induces a differential presynaptic modulation of the synaptic efficacy of nociceptive and proprioceptive joint afferents. Exp Brain Res 239, 2375–2397 (2021). https://doi.org/10.1007/s00221-021-06140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-021-06140-6

Keywords

Navigation