Skip to main content

Advertisement

Log in

Divergent effects of conditioned pain modulation on subjective pain and nociceptive-related brain activity

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Background and objectives

Pain is a complex experience involving both nociceptive and affective–cognitive mechanisms. The present study evaluated whether modulation of pain perception, employing a conditioned pain modulation (CPM) paradigm, is paralleled by changes in contact heat-evoked potentials (CHEPs), a brain response to nociceptive stimuli.

Methods

Participants were 25 healthy, pain-free, college students (12 males, 13 females, mean age 19.24 ± 0.97 years). Twenty computer-controlled heat stimuli were delivered to the non-dominant forearm and CHEPs were recorded at Cz using a 32-channel EEG system. After each stimulus, participants rated the intensity of the heat pain using the 0–100 numerical rating scale. The latency and amplitude of N2, P2 components as well as single-sweep spectral analysis of individual CHEPs were measured offline. For CPM, participants had to submerge their dominant foot into a neutral (32 °C) or noxious (0 °C) water bath. CHEPs and heat pain ratings were recorded in 3 different conditions: without CPM, after neutral CPM (32 °C) and after noxious CPM (0 °C).

Results

The noxious CPM induced a facilitatory pain response (p = 0.001) with an increase in heat pain following noxious CPM compared to neutral CPM (p = 0.001) and no CPM (p = 0.001). Changes in CHEPs did not differ between conditions when measured as N2–P2 peak-to-peak amplitude (p = 0.33) but the CPM significantly suppressed the CHEPs-related delta power (p = 0.03). Changes in heat pain in the noxious CPM were predicted by trait catastrophizing variables (p = 0.04).

Conclusion

The current study revealed that pain facilitatory CPM is related to suppression of CHEPs delta power which could be related to dissociation between brain responses to noxious heat and pain perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arendt-Nielsen L (1990) Second pain event related potentials to argon laser stimuli: recording and quantification. J Neurol Neurosurg Psychiatry 53:405–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannister K, Dickenson AH (2017) The plasticity of descending controls in pain: translational probing. J Physiol 595:4159–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov VB, Vigano A, Noirhomme Q, Bogdanova OV, Guy N et al (2015) Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects. Behav Brain Res 281:187–198

    Article  PubMed  Google Scholar 

  • Boyle Y, El-Deredy W, Martinez Montes E, Bentley DE, Jones AK (2008) Selective modulation of nociceptive processing due to noise distraction. Pain 138:630–640

    Article  PubMed  Google Scholar 

  • Bromm B, Treede RD (1984) Nerve fibre discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum Neurobiol 3:33–40

    CAS  PubMed  Google Scholar 

  • Cook IA, O’Hara R, Uijtdehaage SH, Mandelkern M, Leuchter AF (1998) Assessing the accuracy of topographic EEG mapping for determining local brain function. Electroencephalogr Clin Neurophysiol 107:408–414

    Article  CAS  PubMed  Google Scholar 

  • Cormier S, Piche M, Rainville P (2013) Expectations modulate heterotopic noxious counter-stimulation analgesia. J Pain 14:114–125

    Article  PubMed  Google Scholar 

  • Edwards RR, Dolman AJ, Martel MO, Finan PH, Lazaridou A et al (2016) Variability in conditioned pain modulation predicts response to NSAID treatment in patients with knee osteoarthritis. BMC Musculoskelet Disord 17:284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egsgaard LL, Buchgreitz L, Wang L, Bendtsen L, Jensen R, Arendt-Nielsen L (2012) Short-term cortical plasticity induced by conditioning pain modulation. Exp Brain Res 216:91–101

    Article  PubMed  Google Scholar 

  • Eitner L, Ozgul OS, Enax-Krumova EK, Vollert J, Maier C, Hoffken O (2018) Conditioned pain modulation using painful cutaneous electrical stimulation or simply habituation? Eur J Pain 22:1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Geva N, Pruessner J, Defrin R (2014) Acute psychosocial stress reduces pain modulation capabilities in healthy men. Pain 155:2418–2425

    Article  PubMed  Google Scholar 

  • Goffaux P, Redmond WJ, Rainville P, Marchand S (2007) Descending analgesia–when the spine echoes what the brain expects. Pain 130:137–143

    Article  PubMed  Google Scholar 

  • Goubert D, Danneels L, Cagnie B, Van Oosterwijck J, Kolba K et al (2015) Effect of pain induction or pain reduction on conditioned pain modulation in adults: a systematic review. Pain Pract 15:765–777

    Article  PubMed  Google Scholar 

  • Gram M, Graversen C, Nielsen AK, Arendt-Nielsen T, Morch CD et al (2013) A novel approach to pharmaco-EEG for investigating analgesics: assessment of spectral indices in single-sweep evoked brain potentials. Br J Clin Pharmacol 76:951–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granot M, Weissman-Fogel I, Crispel Y, Pud D, Granovsky Y et al (2008) Determinants of endogenous analgesia magnitude in a diffuse noxious inhibitory control (DNIC) paradigm: do conditioning stimulus painfulness, gender and personality variables matter? Pain 136:142–149

    Article  PubMed  Google Scholar 

  • Granovsky Y, Granot M, Nir RR, Yarnitsky D (2008) Objective correlate of subjective pain perception by contact heat-evoked potentials. J Pain 9:53–63

    Article  PubMed  Google Scholar 

  • Granovsky Y, Anand P, Nakae A, Nascimento O, Smith B et al (2016) Normative data for Adelta contact heat evoked potentials in adult population: a multicenter study. Pain 157:1156–1163

    Article  PubMed  Google Scholar 

  • Greffrath W, Baumgärtner U, Treede RD (2007) Peripheral and central components of habituation of heat pain perception and evoked potentials in humans. Pain 132:301–311

    Article  PubMed  Google Scholar 

  • Hansen TM, Graversen C, Frokjaer JB, Olesen AE, Valeriani M, Drewes AM (2015) Single-sweep spectral analysis of contact heat evoked potentials: a novel approach to identify altered cortical processing after morphine treatment. Br J Clin Pharmacol 79:926–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffken O, Ozgul OS, Enax-Krumova EK, Tegenthoff M, Maier C (2017) Evoked potentials after painful cutaneous electrical stimulation depict pain relief during a conditioned pain modulation. BMC Neurol 17:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn-Hofmann C, Priebe JA, Schaller J, Gorlitz R, Lautenbacher S (2016) Lack of predictive power of trait fear and anxiety for conditioned pain modulation (CPM). Exp Brain Res 234:3649–3658

    Article  PubMed  Google Scholar 

  • Iannetti GD, Hughes NP, Lee MC, Mouraux A (2008) Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? J Neurophysiol 100:815–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight RG, Waal-Manning HJ, Spears GF (1983) Some norms and reliability data for the State-Trait Anxiety Inventory and the Zung Self-Rating Depression scale. Br J Clin Psychol 22(Pt 4):245–249

    Article  PubMed  Google Scholar 

  • Kramer JL, Taylor P, Haefeli J, Blum J, Zariffa J et al (2012) Test-retest reliability of contact heat-evoked potentials from cervical dermatomes. J Clin Neurophysiol 29:70–75

    Article  PubMed  Google Scholar 

  • Kramer JL, Haefeli J, Jutzeler CR, Steeves JD, Curt A (2013) Improving the acquisition of nociceptive evoked potentials without causing more pain. Pain 154:235–241

    Article  PubMed  Google Scholar 

  • Ladouceur A, Tessier J, Provencher B, Rainville P, Piche M (2012) Top-down attentional modulation of analgesia induced by heterotopic noxious counterstimulation. Pain 153:1755–1762

    Article  PubMed  Google Scholar 

  • Lautenbacher S, Roscher S, Strian F (2002) Inhibitory effects do not depend on the subjective experience of pain during heterotopic noxious conditioning stimulation (HNCS): a contribution to the psychophysics of pain inhibition. Eur J Pain 6:365–374

    Article  PubMed  Google Scholar 

  • Legrain V, Guerit JM, Bruyer R, Plaghki L (2002) Attentional modulation of the nociceptive processing into the human brain: selective spatial attention, probability of stimulus occurrence, and target detection effects on laser evoked potentials. Pain 99:21–39

    Article  PubMed  Google Scholar 

  • Legrain V, Perchet C, Garcia-Larrea L (2009) Involuntary orienting of attention to nociceptive events: neural and behavioral signatures. J Neurophysiol 102:2423–2434

    Article  PubMed  Google Scholar 

  • Lewis GN, Rice DA, McNair PJ (2012) Conditioned pain modulation in populations with chronic pain: a systematic review and meta-analysis. J Pain 13:936–944

    Article  Google Scholar 

  • Locke D, Gibson W, Moss P, Munyard K, Mamotte C, Wright A (2014) Analysis of meaningful conditioned pain modulation effect in a pain-free adult population. J Pain 15:1190–1198

    Article  PubMed  Google Scholar 

  • Martini M, Lee MC, Valentini E, Iannetti GD (2015) Intracortical modulation, and not spinal inhibition, mediates placebo analgesia. Eur J Neurosci 41:498–504

    Article  CAS  PubMed  Google Scholar 

  • Metting van Rijn AC, Peper A, Grimbergen CA (1990) High-quality recording of bioelectric events. Part 1. Interference reduction, theory and practice. Med Biol Eng Comput 28:389–397

    Article  CAS  PubMed  Google Scholar 

  • Mobascher A, Brinkmeyer J, Warbrick T, Musso F, Wittsack HJ et al (2009) Laser-evoked potential P2 single-trial amplitudes covary with the fMRI BOLD response in the medial pain system and interconnected subcortical structures. Neuroimage 45:917–926

    Article  CAS  PubMed  Google Scholar 

  • Moont R, Pud D, Sprecher E, Sharvit G, Yarnitsky D (2010) ‘Pain inhibits pain’ mechanisms: is pain modulation simply due to distraction? Pain 150:113–120

    Article  PubMed  Google Scholar 

  • Nahman-Averbuch H, Nir RR, Sprecher E, Yarnitsky D (2016) Psychological factors and conditioned pain modulation: a meta-analysis. Clin J Pain 32:541–554

    Article  PubMed  Google Scholar 

  • Nuwer MR, Lehmann D, Lopes da Silva F, Matsuoka S, Sutherling W, Vibert JF (1994) IFCN guidelines for topographic and frequency analysis of EEGs and EPs. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 91:1–5

    Article  CAS  PubMed  Google Scholar 

  • Piche M, Watanabe N, Sakata M, Oda K, Toyohara J et al (2014) Basal mu-opioid receptor availability in the amygdala predicts the inhibition of pain-related brain activity during heterotopic noxious counter-stimulation. Neurosci Res 81–82:78–84

    Article  CAS  PubMed  Google Scholar 

  • Plaghki L, Delisle D, Godfraind JM (1994) Heterotopic nociceptive conditioning stimuli and mental task modulate differently the perception and physiological correlates of short CO2 laser stimuli. Pain 57:181–192

    Article  CAS  PubMed  Google Scholar 

  • Pud D, Granovsky Y, Yarnitsky D (2009) The methodology of experimentally induced diffuse noxious inhibitory control (DNIC)-like effect in humans. Pain 144:16–19

    Article  PubMed  Google Scholar 

  • Rabey M, Poon C, Wray J, Thamajaree C, East R, Slater H (2015) Pro-nociceptive and anti-nociceptive effects of a conditioned pain modulation protocol in participants with chronic low back pain and healthy control subjects. Man Ther 20:763–768

    Article  PubMed  Google Scholar 

  • Radloff LS (1977) The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1:385–401

    Article  Google Scholar 

  • Razavi M, Hansson PT, Johansson B, Leffler AS (2014) The influence of intensity and duration of a painful conditioning stimulation on conditioned pain modulation in volunteers. Eur J Pain 18:853–861

    Article  CAS  PubMed  Google Scholar 

  • Roberts K, Papadaki A, Gonçalves C, Tighe M, Atherton D et al (2008) Contact heat evoked potentials using simultaneous EEG and FMRI and their correlation with evoked pain. BMC Anesthesiol 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Rustamov N, Tessier J, Provencher B, Lehmann A, Piche M (2016) Inhibitory effects of heterotopic noxious counter-stimulation on perception and brain activity related to Abeta-fibre activation. Eur J Neurosci 44:1771–1778

    Article  PubMed  Google Scholar 

  • Sullivan MJL, Bishop SR, Pivik J (1995) The Pain Catastrophizing Scale: development and validation. Psychol Assess 7:524–532

    Article  Google Scholar 

  • Sullivan MJ, Thorn B, Haythornthwaite JA, Keefe F, Martin M et al (2001) Theoretical perspectives on the relation between catastrophizing and pain. Clin J Pain 17:52–64

    Article  CAS  PubMed  Google Scholar 

  • Terry EL, Thompson KA, Rhudy JL (2015) Experimental reduction of pain catastrophizing modulates pain report but not spinal nociception as verified by mediation analyses. Pain 156:1477–1488

    Article  PubMed  Google Scholar 

  • Torta DM, Churyukanov MV, Plaghki L, Mouraux A (2015) The effect of heterotopic noxious conditioning stimulation on Adelta-, C- and Abeta-fibre brain responses in humans. Eur J Neurosci 42:2707–2715

    Article  PubMed  PubMed Central  Google Scholar 

  • Torta D, Jure F, Andersen O, Biurrun-Manresa J (2018) Intense and sustained pain reduces cortical responses to auditory stimuli: implications for the interpretation of heterotopic noxious conditioning stimulation in humans. bioRxiv:460576

  • Treister R, Eisenberg E, Gershon E, Haddad M, Pud D (2010) Factors affecting—and relationships between-different modes of endogenous pain modulation in healthy volunteers. Eur J Pain 14:608–614

    Article  PubMed  Google Scholar 

  • Vaegter HB, Graven-Nielsen T (2016) Pain modulatory phenotypes differentiate subgroups with different clinical and experimental pain sensitivity. Pain 157:1480–1488

    Article  PubMed  Google Scholar 

  • Vaegter HB, Petersen KK, Morch CD, Imai Y, Arendt-Nielsen L (2018) Assessment of CPM reliability: quantification of the within-subject reliability of 10 different protocols. Scand J Pain 18:729–737

    Article  PubMed  Google Scholar 

  • Valentini E, Hu L, Chakrabarti B, Hu Y, Aglioti SM, Iannetti GD (2012) The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. Neuroimage 59:1571–1581

    Article  CAS  PubMed  Google Scholar 

  • Villanueva L, Le Bars D (1995) The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls. Biol Res 28:113–125

    CAS  PubMed  Google Scholar 

  • Wager TD, Matre D, Casey KL (2006) Placebo effects in laser-evoked pain potentials. Brain Behav Immun 20:219–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang AL, Mouraux A, Liang M, Iannetti GD (2010) Stimulus novelty, and not neural refractoriness, explains the repetition suppression of laser-evoked potentials. J Neurophysiol 104:2116–2124

    Article  CAS  PubMed  Google Scholar 

  • Weissman-Fogel I, Sprecher E, Pud D (2008) Effects of catastrophizing on pain perception and pain modulation. Exp Brain Res 186:79–85

    Article  PubMed  Google Scholar 

  • World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194

    Article  CAS  Google Scholar 

  • Yarnitsky D (2010) Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): its relevance for acute and chronic pain states. Curr Opin Anaesthesiol 23:611–615

    Article  PubMed  Google Scholar 

  • Yarnitsky D, Bouhassira D, Drewes AM, Fillingim RB, Granot M et al (2015) Recommendations on practice of conditioned pain modulation (CPM) testing. Eur J Pain 19:805–806

    Article  CAS  PubMed  Google Scholar 

  • Youssef AM, Macefield VG, Henderson LA (2016) Cortical influences on brainstem circuitry responsible for conditioned pain modulation in humans. Hum Brain Mapp 37:2630–2644

    Article  PubMed  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

SA and MWM contributed to the conception and design of the studies. SA collected and analyzed the data and both authors discussed the results. SA drafted the manuscript and MWM revised it critically for important intellectual content. Both authors approved the final version.

Corresponding author

Correspondence to Sergiu Albu.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest regarding this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albu, S., Meagher, M.W. Divergent effects of conditioned pain modulation on subjective pain and nociceptive-related brain activity. Exp Brain Res 237, 1735–1744 (2019). https://doi.org/10.1007/s00221-019-05545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-019-05545-8

Keywords

Navigation