Skip to main content
Log in

Role of point of application of perturbation in control of vertical posture

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The role of point of application of perturbation in the anticipatory (APAs) and compensatory (CPAs) postural control was studied. Twelve healthy participants stood on a sliding board (that was either locked and as such motionless or unlocked and as such free to move in the anterior–posterior direction). The body perturbations were applied either to the shoulders (by a pendulum impact) or the feet (by the movement of the sliding board). Electromyographic activity (EMG) of the trunk and lower extremity muscles was recorded. Latencies, integrals of EMG and muscle co-contraction (C) and reciprocal (R) activation indices were calculated and analyzed within the intervals typical for the APAs and CPAs. Higher EMG integrals were seen in the APAs phase when perturbation was applied to the shoulders. Reciprocal activation of muscles was seen in the APAs phase in the shoulders perturbation condition, while co-contraction was seen in the feet perturbation condition. Co-contraction was observed within the CPA phase in both experimental conditions. Higher C values were found in the feet perturbation condition in the CPA phase. The results suggest that different motor control strategies are employed by the central nervous system when encounter perturbations of similar magnitude but applied to different parts of the body. The outcome highlights the importance of investigation of the role of the point of application of the perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adkin AL, Frank JS, Carpenter MG, Peysar GW (2002) Fear of falling modifies anticipatory postural control. Exp Brain Res 143:160–170. doi:10.1007/s00221-001-0974-8

    Article  PubMed  Google Scholar 

  • Alexandrov AV, Frolov AA, Horak FB, Carlson-Kuhta P, Park S (2005) Feedback equilibrium control during human standing. Biol Cybern 93:309–322. doi:10.1007/s00422-005-0004-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aruin AS (2003) The effect of changes in the body configuration on anticipatory postural adjustments. Mot Control 7:264–277

    Article  Google Scholar 

  • Aruin A, Almeida GL (1997) A coactivation strategy in anticipatory postural adjustments in persons with Down syndrome. Mot Control 1:178–191

    Article  Google Scholar 

  • Aruin AS, Latash ML (1995a) Directional specificity of postural muscles in feed-forward postural reactions during fast voluntary arm movements. Exp Brain Res 103:323–332

    Article  CAS  PubMed  Google Scholar 

  • Aruin AS, Latash ML (1995b) The role of motor action in anticipatory postural adjustments studied with self-induced and externally triggered perturbations. Exp Brain Res 106:291–300

    Article  CAS  PubMed  Google Scholar 

  • Aruin AS, Latash ML (1996) Anticipatory postural adjustments during self-initiated perturbations of different magnitude triggered by a standard motor action. Electroencephalogr Clin Neurophysiol 101:497–503

    CAS  PubMed  Google Scholar 

  • Aruin AS, Forrest WR, Latash ML (1998) Anticipatory postural adjustments in conditions of postural instability. Electroencephalogr Clin Neurophysiol 109:350–359

    Article  CAS  PubMed  Google Scholar 

  • Aruin AS, Shiratori T, Latash ML (2001) The role of action in postural preparation for loading and unloading in standing subjects. Exp Brain Res 138:458–466

    Article  CAS  PubMed  Google Scholar 

  • Bateni H, Zecevic A, McIlroy WE, Maki BE (2004) Resolving conflicts in task demands during balance recovery: does holding an object inhibit compensatory grasping? Exp Brain Res 157:49–58. doi:10.1007/s00221-003-1815-8

    Article  PubMed  Google Scholar 

  • Burleigh A, Horak F (1996) Influence of instruction, prediction, and afferent sensory information on the postural organization of step initiation. J Neurophysiol 75:1619–1628

    CAS  PubMed  Google Scholar 

  • Chen B, Lee YJ, Aruin AS (2016) Control of grip force and vertical posture while holding an object and being perturbed. Exp Brain Res 234:3193–3201. doi:10.1007/s00221-016-4717-2

    Article  PubMed  Google Scholar 

  • Cordo PJ, Nashner LM (1982) Properties of postural adjustments associated with rapid arm movements. J Neurophysiol 47:287–302

    CAS  PubMed  Google Scholar 

  • Dimitrova D, Horak FB, Nutt JG (2004) Postural muscle responses to multidirectional translations in patients with Parkinson’s disease. J Neurophysiol 91:489–501. doi:10.1152/jn.00094.2003

    Article  PubMed  Google Scholar 

  • Elble RJ, Leffler K (2000) Pushing and pulling with the upper extremities while standing: the effects of mild Alzheimer dementia and Parkinson’s disease. Mov Disord 15:255–268

    Article  CAS  PubMed  Google Scholar 

  • Hall LM, Brauer S, Horak F, Hodges PW (2010) Adaptive changes in anticipatory postural adjustments with novel and familiar postural supports. J Neurophysiol 103:968–976. doi:10.1152/jn.00479.2009

    Article  PubMed  Google Scholar 

  • Henry SM, Fung J, Horak FB (2001) Effect of stance width on multidirectional postural responses. J Neurophysiol 85:559–570

    CAS  PubMed  Google Scholar 

  • Hirata RP, Arendt-Nielsen L, Graven-Nielsen T (2010) Experimental calf muscle pain attenuates the postural stability during quiet stance and perturbation. Clin Biomech (Bristol, Avon) 25:931–937. doi:10.1016/j.clinbiomech.2010.06.001

    Article  Google Scholar 

  • Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 55:1369–1381

    CAS  PubMed  Google Scholar 

  • Hwang S, Tae K, Sohn R, Kim J, Son J, Kim Y (2009) The balance recovery mechanisms against unexpected forward perturbation. Ann Biomed Eng 37:1629–1637. doi:10.1007/s10439-009-9717-y

    Article  PubMed  Google Scholar 

  • Kanekar N, Santos MJ, Aruin AS (2008) Anticipatory postural control following fatigue of postural and focal muscles. Clin Neurophysiol 119:2304–2313. doi:10.1016/j.clinph.2008.06.015

    Article  PubMed  Google Scholar 

  • Latash ML, Aruin AS, Neyman I, Nicholas JJ (1995) Anticipatory postural adjustments during self inflicted and predictable perturbations in Parkinson’s disease. J Neurol Neurosurg Psychiatry 58:326–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Chen B, Aruin AS (2015) Older adults utilize less efficient postural control when performing pushing task. J Electromyogr Kinesiol 25:966–972. doi:10.1016/j.jelekin.2015.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhou P, Aruin AS (2007) Teager–Kaiser energy operation of surface EMG improves muscle activity onset detection. Ann Biomed Eng 35:1532–1538. doi:10.1007/s10439-007-9320-z

    Article  PubMed  Google Scholar 

  • Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38:35–56

    Article  CAS  PubMed  Google Scholar 

  • Massion J, Ioffe M, Schmitz C, Viallet F, Gantcheva R (1999) Acquisition of anticipatory postural adjustments in a bimanual load-lifting task: normal and pathological aspects. Exp Brain Res 128:229–235

    Article  CAS  PubMed  Google Scholar 

  • Memari S, Le Bozec S, Bouisset S (2014) Particular adaptations to potentially slippery surfaces: the effects of friction on consecutive postural adjustments (CPA). Neurosci Lett 561:24–29. doi:10.1016/j.neulet.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki G, Ivanova TD, Garland SJ (2004) Postural muscle activity during bilateral and unilateral arm movements at different speeds. Exp Brain Res 155:352–361. doi:10.1007/s00221-003-1732-x

    Article  CAS  PubMed  Google Scholar 

  • Nashner LM, Cordo PJ (1981) Relation of automatic postural responses and reaction-time voluntary movements of human leg muscles. Exp Brain Res 43:395–405

    CAS  PubMed  Google Scholar 

  • Park S, Horak FB, Kuo AD (2004) Postural feedback responses scale with biomechanical constraints in human standing. Exp Brain Res 154:417–427. doi:10.1007/s00221-003-1674-3

    Article  PubMed  Google Scholar 

  • Santos MJ, Aruin AS (2009) Effects of lateral perturbations and changing stance conditions on anticipatory postural adjustment. J Electromyogr Kinesiol 19:532–541. doi:10.1016/j.jelekin.2007.12.002

    Article  PubMed  Google Scholar 

  • Santos MJ, Kanekar N, Aruin AS (2010a) The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis. J Electromyogr Kinesiol 20:388–397. doi:10.1016/j.jelekin.2009.06.006

    Article  PubMed  Google Scholar 

  • Santos MJ, Kanekar N, Aruin AS (2010b) The role of anticipatory postural adjustments in compensatory control of posture: 2. Biomechanical analysis. J Electromyogr Kinesiol 20:398–405. doi:10.1016/j.jelekin.2010.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiratori T, Aruin AS (2004) Anticipatory postural adjustments associated with rotational perturbations while standing on fixed and free-rotating supports. Clin Neurophysiol 115:797–806. doi:10.1016/j.clinph.2003.11.015

    Article  PubMed  Google Scholar 

  • Shiratori T, Aruin A (2007) Modulation of anticipatory postural adjustments associated with unloading perturbation: effect of characteristics of a motor action. Exp Brain Res 178:206–215. doi:10.1007/s00221-006-0725-y

    Article  PubMed  Google Scholar 

  • Shiratori T, Latash M (2000) The roles of proximal and distal muscles in anticipatory postural adjustments under asymmetrical perturbations and during standing on rollerskates. Clin Neurophysiol 111:613–623

    Article  CAS  PubMed  Google Scholar 

  • Shiratori T, Latash ML (2001) Anticipatory postural adjustments during load catching by standing subjects. Clin Neurophysiol 112:1250–1265

    Article  CAS  PubMed  Google Scholar 

  • Slijper H, Latash ML (2004) The effects of muscle vibration on anticipatory postural adjustments. Brain Res 1015:57–72. doi:10.1016/j.brainres.2004.04.054

    Article  CAS  PubMed  Google Scholar 

  • Strang AJ, Berg WP (2007) Fatigue-induced adaptive changes of anticipatory postural adjustments. Exp Brain Res 178:49–61. doi:10.1007/s00221-006-0710-5

    Article  PubMed  Google Scholar 

  • Toussaint HM, Commissaris DA, Beek PJ (1997) Anticipatory postural adjustments in the back and leg lift. Med Sci Sports Exerc 29:1216–1224

    Article  CAS  PubMed  Google Scholar 

  • van der Fits IB, Klip AW, van Eykern LA, Hadders-Algra M (1998) Postural adjustments accompanying fast pointing movements in standing, sitting and lying adults. Exp Brain Res 120:202–216

    Article  PubMed  Google Scholar 

  • Winter DA, Prince F, Frank JS, Powell C, Zabjek KF (1996) Unified theory regarding A/P and M/L balance in quiet stance. J Neurophysiol 75:2334–2343

    CAS  PubMed  Google Scholar 

  • Yiou E, Mezaour M, Le Bozec S (2009) Anticipatory postural adjustments and focal performance during bilateral forward-reach task under different stance conditions. Mot Control 13:142–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Aruin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Lee, YJ. & Aruin, A.S. Role of point of application of perturbation in control of vertical posture. Exp Brain Res 235, 3449–3457 (2017). https://doi.org/10.1007/s00221-017-5069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-5069-2

Keywords

Navigation