Skip to main content
Log in

Leftward oculomotor prismatic training induces a rightward bias in normal subjects

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Wedge prisms shifting the visual field laterally create a mismatch between the straight ahead position signalled by vision and that encoded by extraretinal and head-on-trunk proprioceptive information. Short-term adaptation to left-deviating prisms in normal subjects results in a visuomotor attentional bias towards the right-hand side (aftereffect). Prismatic adaptation (PA) is usually induced through a training consisting in repeated ballistic movements of the dominant arm towards visual targets, while participants are wearing prismatic goggles. The present study demonstrates that an original oculomotor PA procedure with leftward deviating prisms—without pointing movements and only consisting in repeated gaze shifts towards visual targets—can induce a rightward bias in normal subjects as assessed by visual straight ahead and line bisection tasks (Experiments 1 and 2). We show that oculomotor PA induces a bias in line bisection similar to that reported after visuomotor PA (Experiment 2). We suggest that a conflict between retinal, extraretinal and proprioceptive information about the straight ahead location causes the observed effects. In follow-up experiments 3, 4, and 5, we demonstrate that neither eye deviation without prisms nor shift of the visual field without eye deviation induces PA biases. We propose that an optimal integration model of visual and proprioceptive inputs can best account for the observed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berberovic N, Mattingley JB (2003) Effects of prismatic adaptation on judgements of spatial extent in peripersonal and extrapersonal space. Neuropsychologia 41:493–503

    Article  PubMed  Google Scholar 

  • Bisiach E (1997) The spatial features of unilateral neglect. In: Thier P, Karnath HO (eds) Parietal lobe contributions to orientation in 3D space. Springer, Heidelberg, pp 465–495

    Chapter  Google Scholar 

  • Bisiach E, Pattini P, Rusconi ML, Ricci R, Bernardini B (1997) Unilateral neglect and space constancy during passive locomotion. Cortex 33:313–322

    Article  CAS  PubMed  Google Scholar 

  • Bultitude JH, Van der Stigchel S, Nijboer TC (2013) Prism adaptation alters spatial remapping in healthy individuals: evidence from double-step saccades. Cortex 49:759–770. doi:10.1016/j.cortex.2012.01.008

    Article  PubMed  Google Scholar 

  • Chapman HL, Eramudugolla R, Gavrilescu M, Strudwick MW, Loftus A, Cunnington R, Mattingley JB (2010) Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms. Neuropsychologia 48:2595–2601. doi:10.1016/j.neuropsychologia.2010.05.006

    Article  PubMed  Google Scholar 

  • Colent C, Pisella L, Bernieri C, Rode G, Rossetti Y (2000) Cognitive bias induced by visuo-motor adaptation to prisms: a simulation of unilateral neglect in normal individuals? Neuroreport 11:1899–1902

    Article  CAS  PubMed  Google Scholar 

  • Craske B (1967) Adaptation to prisms: Change in internally registered eye-position. Br J Psychol 58:329–335

    Article  CAS  PubMed  Google Scholar 

  • Ebenholtz SM (1976) Additivity of aftereffects of maintained head and eye rotations: An alternative to recalibration. Perception Psychophysics 19:113–116

    Article  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433. doi:10.1038/415429a

    Article  CAS  PubMed  Google Scholar 

  • Ferber S, Danckert J, Joanisse M, Goltz HC, Goodale MA (2003) Eye movements tell only half the story. Neurology 60:1826–1829

    Article  CAS  PubMed  Google Scholar 

  • Fortis P, Goedert KM, Barrett AM (2011) Prism adaptation differently affects motor-intentional and perceptual-attentional biases in healthy individuals. Neuropsychologia 49:2718–2727. doi:10.1016/j.neuropsychologia.2011.05.020

    Article  PubMed  PubMed Central  Google Scholar 

  • Girardi M, McIntosh RD, Michel C, Vallar G, Rossetti Y (2004) Sensorimotor effects on central space representation: prism adaptation influences haptic and visual representations in normal subjects. Neuropsychologia 42:1477–1487. doi:10.1016/j.neuropsychologia.2004.03.008

    Article  CAS  PubMed  Google Scholar 

  • Harris CS (1963) Adaptation to displaced vision: visual, motor, or proprioceptive change? Science 140:812–813

    Article  CAS  PubMed  Google Scholar 

  • Hay JC, Pick HL Jr (1966) Visual and proprioceptive adaptation to optical displacement of the visual stimulus. J Exp Psychol 71:150–158

    Article  CAS  PubMed  Google Scholar 

  • Hay JC, Pick HL, Ikeda K (1965) Visual capture produced by prism spectacles. Psychon Sci 2:215–216

    Article  Google Scholar 

  • Jacquin-Courtois S, O’Shea J, Luaute J et al (2013) Rehabilitation of spatial neglect by prism adaptation: a peculiar expansion of sensorimotor after-effects to spatial cognition. Neurosci Biobehav Rev 37:594–609. doi:10.1016/j.neubiorev.2013.02.007

    Article  PubMed  Google Scholar 

  • Michel C, Pisella L, Halligan PW, Luaute J, Rode G, Boisson D, Rossetti Y (2003) Simulating unilateral neglect in normals using prism adaptation: implications for theory. Neuropsychologia 41:25–39

    Article  PubMed  Google Scholar 

  • Newport R, Preston C, Pearce R, Holton R (2009) Eye rotation does not contribute to shifts in subjective straight ahead: implications for prism adaptation and neglect. Neuropsychologia 47:2008–2012. doi:10.1016/j.neuropsychologia.2009.02.017

    Article  PubMed  Google Scholar 

  • Rabuffetti M, Folegatti A, Spinazzola L, Ricci R, Ferrarin M, Berti A, Neppi-Modona M (2013) Long-lasting amelioration of walking trajectory in neglect after prismatic adaptation. Front Hum Neurosci 7:382 doi:10.3389/fnhum.2013.00382

    Article  PubMed  PubMed Central  Google Scholar 

  • Rock I, Goldberg J, Mack A (1966) Immediate correction and adaptation based on viewing a prismatically displaced scene. Percept Psychophysycs 1:351–354

    Article  Google Scholar 

  • Ronga I, Franza M, Sarasso P, Neppi-Modona M (in press) Oculomotor Prismatic Training is effective in ameliorating spatial neglect: a pilot study. Experimental Brain Research. doi:10.1007/s00221-017-4923-6

  • Rossetti Y, Rode G, Pisella L, Farne A, Li L, Boisson D, Perenin MT (1998) Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 395:166–169. doi:10.1038/25988

    Article  CAS  PubMed  Google Scholar 

  • Schintu S, Pisella L, Jacobs S, Salemme R, Reilly KT, Farne A (2014) Prism adaptation in the healthy brain: the shift in line bisection judgments is long lasting and fluctuates. Neuropsychologia 53:165–170. doi:10.1016/j.neuropsychologia.2013.11.013

    Article  PubMed  Google Scholar 

  • Serino A, Angeli V, Frassinetti F, Ladavas E (2006) Mechanisms underlying neglect recovery after prism adaptation. Neuropsychologia 44:1068–1078. doi:10.1016/j.neuropsychologia.2005.10.024

    Article  PubMed  Google Scholar 

  • Striemer C, Sablatnig J, Danckert J (2006) Differential influences of prism adaptation on reflexive and voluntary covert attention. J Int Neuropsychol Soc 12:337–349

    Article  PubMed  Google Scholar 

  • van Beers RJ, Sittig AC, Gon JJ (1999) Integration of proprioceptive and visual position-information: an experimentally supported model. J Neurophysiol 81:1355–1364

    PubMed  Google Scholar 

  • van Beers RJ, Wolpert DM, Haggard P (2002) When feeling is more important than seeing in sensorimotor adaptation. Curr Biol 12:834–837

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Spatial Motor and Bodily Awareness (SaMBA) Group for the valuable discussion about the present research. We would like to acknowledge the contribution of Professor Ferdinando Rossi, who left us prematurely in January 2014. He provided us with precious insights and actively supported the initial phases of the project. IR, at the time of the experiments, was founded by a research grant (University of Turin, Italy) on the plasticity of adult human brain and, with Marco Neppi Modona, by a grant of the Italian Ministry of University and Scientific Research (MIUR), PRIN 2010ENPRYE_003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ronga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronga, I., Sarasso, P., Raineri, F. et al. Leftward oculomotor prismatic training induces a rightward bias in normal subjects. Exp Brain Res 235, 1759–1770 (2017). https://doi.org/10.1007/s00221-017-4934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-017-4934-3

Keywords

Navigation