Skip to main content

Advertisement

Log in

The direction of the postural response to a vestibular perturbation is mediated by the cerebellar vermis

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

When an electrical stimulus is applied to perturb the vestibular system, a postural response is generated orthogonal to head orientation. It has previously been shown that there is a convergence of neck proprioceptive and vestibular input within the cerebellum to provide a head-on-body reference frame (Manzoni et al. in Neuroscience 93:1095–1107, 1999). The objective of this experiment was to determine whether the direction of the postural response to a vestibular perturbation is modulated when function of the cerebellar vermis is temporarily depressed. Twenty participants were randomly assigned to a SHAM group (paired-pulse transcranial magnetic stimulation) or a TEST group (continuous theta burst stimulation). Stochastic vestibular stimulation (SVS) was applied to standing subjects with their head facing forward or over their left shoulder. Cumulant density traces were established between the SVS and shear force over 180°, and the peak amplitude determined the direction of sway. There were no significant changes in sway direction when the head was facing forward for either stimulation (TEST or SHAM; p = 0.889) or when the head was facing over the shoulder for the SHAM condition (p = 0.954). There was, however, a significant change in sway direction when the head was turned with a depressed cerebellum (p = 0.018); from the expected antero-posterior direction, orthogonal to head orientation, to one slightly more mediolateral with respect to the feet. These results suggest the cerebellum plays a role in the integration of input to generate an appropriately directed postural response relative to the head position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aimonetti J-M, Hospod V, Roll J-P, Ribot-Ciscar E (2007) Cutaneous afferents provide a neuronal population vector that encodes the orientation of human ankle movements. J Physiol 580:649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelaki DE, Yakusheva TA, Green AM et al (2010) Computation of egomotion in the macaque cerebellar vermis. Cerebellum 9:174–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311

    Article  CAS  PubMed  Google Scholar 

  • Arasanz CP, Staines WR, Roy EA, Schweizer TA (2012) The cerebellum and its role in word generation: a cTBS study. Cortex 48:718–724

    Article  PubMed  Google Scholar 

  • Bent LR, McFadyen BJ, French Merkley V et al (2000) Magnitude effects of galvanic vestibular stimulation on the trajectory of human gait. Neurosci Lett 279:157–160

    Article  CAS  PubMed  Google Scholar 

  • Boyd CAR (2010) Cerebellar agenesis revisited. Brain 133:941–944

    Article  CAS  PubMed  Google Scholar 

  • Black FO, Wall C, Nashner LM (1983) Effects of visual and support surface orientation references upon postral control in vestibular deficient subjects. Acta Otolaryngol 95:199–210

    Article  CAS  PubMed  Google Scholar 

  • Blum PS, Gilman S (1979) Vestibular, somatosensory, and auditory input to the thalamus of the cat. Exp Neurol 65:343–354

    Article  CAS  PubMed  Google Scholar 

  • Britton TC, Day BL, Brown P et al (1993) Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man. Exp Brain Res 94:143–151

    Article  CAS  PubMed  Google Scholar 

  • Cathers I, Day BL, Fitzpatrick RC (2005) Otolith and canal reflexes in human standing. J Physiol 563:229–234

    Article  CAS  PubMed  Google Scholar 

  • Chadderton P, Schaefer AT, Williams SR, Margrie TW (2014) Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons. Nat Rev Neurosci 15:71–83

    Article  CAS  PubMed  Google Scholar 

  • Chen R (2000) Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve 9:S26–S32

    Article  CAS  PubMed  Google Scholar 

  • Chen R (2004) Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 154:1–10

    Article  PubMed  Google Scholar 

  • Dakin CJ, Son GML, Inglis JT, Blouin J-S (2007) Frequency response of human vestibular reflexes characterized by stochastic stimuli. J Physiol 583:1117–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day BL, Cole J (2002) Vestibular-evoked postural responses in the absence of somatosensory information. Brain 125:2081–2088

    Article  PubMed  Google Scholar 

  • Demirtas-Tatlidede A, Freitas C, Cromer JR et al (2010) Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res 124:91–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Denoth F, Magherini PC, Pompeiano O, Stanojević M (1979) Responses of purkinje cells of the cerebellar vermis to neck and macular vestibular inputs. Pflüg Arch Eur J Physiol 381:87–98

    Article  CAS  Google Scholar 

  • Edin BB, Vallbo AB (1990) Dynamic response of human muscle spindle afferents to stretch. J Neurophysiol 63:1297–1306

    CAS  PubMed  Google Scholar 

  • Fitzpatrick R, McCloskey DI (1994) Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J Physiol 478:173–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick RC, Day BL (2004) Probing the human vestibular system with galvanic stimulation. J Appl Physiol 96:2301–2316

    Article  PubMed  Google Scholar 

  • Grace Gaerlan M, Alpert PT, Cross C et al (2012) Postural balance in young adults: the role of visual, vestibular and somatosensory systems. J Am Acad Nurse Pract 24:375–381

    Article  PubMed  Google Scholar 

  • Green AM, Angelaki DE (2010) Multisensory integration: resolving sensory ambiguities to build novel representations. Curr Opin Neurobiol 20:353–360

    Article  CAS  PubMed  Google Scholar 

  • Gurfinkel VS, Popov KE, Smetanin BN, Shlykov VY (1989) Changes in the direction of vestibulomotor response in the course of adaptation to protracted static head turning in man. Neirofiziologiia 21(2):210–217

    CAS  PubMed  Google Scholar 

  • Huang Y-Z, Edwards MJ, Rounis E et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  CAS  PubMed  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  • Kammermeier S, Kleine JF, Eggert T et al (2013) Disturbed vestibular-neck interaction in cerebellar disease. J Neurol 260:794–804

    Article  CAS  PubMed  Google Scholar 

  • Koch G, Mori F, Marconi B et al (2008) Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol 119:2559–2569

    Article  PubMed  Google Scholar 

  • Lopez C, Blanke O (2011) The thalamocortical vestibular system in animals and humans. Brain Res Rev 67:119–146

    Article  PubMed  Google Scholar 

  • Lund S, Broberg C (1983) Effects of different head positions on postural sway in man induced by a reproducible vestibular error signal. Acta Physiol Scand 117:307–309

    Article  CAS  PubMed  Google Scholar 

  • Manzoni D, Pompeiano O, Bruschini L, Andre P (1999) Neck input modifies the reference frame for coding labyrinthine signals in the cerebellar vermis: a cellular analysis. Neuroscience 93:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Marsden JF, Castellote J, Day BL (2002) Bipedal distribution of human vestibular-evoked postural responses during asymmetrical standing. J Physiol 542:323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mian OS, Day BL (2009) Determining the direction of vestibular-evoked balance responses using stochastic vestibular stimulation. J Physiol 587:2869–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mian OS, Day BL (2014) Violation of the craniocentricity principle for vestibularly evoked balance responses under conditions of anisotropic stability. J Neurosci 34:7696–7703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nashner LM, Wolfson P (1974) Influence of head position and proprioceptive cues on short latency postural reflexes evoked by galvanic stimulation of the human labyrinth. Brain Res 67:255–268

    Article  CAS  PubMed  Google Scholar 

  • Newton RA (1982) Joint receptor contributions to reflexive and kinesthetic responses. Phys Ther 62:22–29

    CAS  PubMed  Google Scholar 

  • Pettorossi VE, Schieppati M (2014) Neck proprioception shapes body orientation and perception of motion. Front Hum Neurosci 8:895

    Article  PubMed  PubMed Central  Google Scholar 

  • Popa T, Russo M, Meunier S (2010) Long-lasting inhibition of cerebellar output. Brain Stimul 3:161–169

    Article  CAS  PubMed  Google Scholar 

  • Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82:97–106

    Article  CAS  PubMed  Google Scholar 

  • Roy JE, Cullen KE (2001) Selective processing of vestibular reafference during self-generated head motion. J Neurosci 21:2131–2142

    CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci 357:1695–1708

    Article  PubMed  PubMed Central  Google Scholar 

  • Silveri MC, Di Betta AM, Filippini V et al (1998) Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain 121:2175–2187

    Article  PubMed  Google Scholar 

  • Stiles L, Smith PF (2015) The vestibular-basal ganglia connection: balancing motor control. Brain Res 1597:180–188. doi:10.1016/j.brainres

    Article  CAS  PubMed  Google Scholar 

  • Ugawa Y, Rothwell JC, Day BL, Thompson PD, Marsden CD (1991) Percutaneous electrical stimulation of corticospinal pathways at the level of the pyramidal decussation in humans. Ann Neurol 29:418–427

    Article  CAS  PubMed  Google Scholar 

  • Wiestler T, McGonigle DJ, Diedrichsen J (2011) Integration of sensory and motor representations of single fingers in the human cerebellum. J Neurophysiol 105:3042–3053

    Article  PubMed  Google Scholar 

  • Yakusheva TA, Shaikh AG, Green AM et al (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54:973–985

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Natural Science and Engineering Research Council of Canada Discovery Grant (NSERC DG to L. R. B). The authors would also like to thank Gagan Gill for help with data collection and recruitment and Dr. Ryan Peters for his technical support and guidance on data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah R. Bent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, C.K., Tokuno, C.D., Staines, W.R. et al. The direction of the postural response to a vestibular perturbation is mediated by the cerebellar vermis. Exp Brain Res 234, 3689–3697 (2016). https://doi.org/10.1007/s00221-016-4766-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-016-4766-6

Keywords

Navigation