Skip to main content
Log in

Organization of the efferent projections of the pedunculopontine tegmental nucleus of the midbrain of the dog pallidum

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

Studies of the pedunculopontinopallidal projections of the dog brain based on the retrograde axonal transport of horseradish peroxidase demonstrated that the compact zone (PPNc) and the lateral area of the diffuse zone (PPNd) of the pedunculopontine tegmental nucleus (PPN) of the midbrain project to the globus pallidus, entopeduncular nucleus, and ventral pallidum. The medial area of the PPNd, adjacent to the chiasm of the upper cerebellar peduncles and seen in other animals as the mesencephalic extrapyramidal area (MEA), projects only to the globus pallidus. In dogs, this area of the tegmentum is not a major source of projections to the striopallidum, such that it is inappropriate to regard it as a separate structure, comment being restricted to the topical organization of PPNd projections to the pallidum. Projection fibers to pallidal structures arise from both cholinergic and non-cholinergic PPN neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gorbachevskaya and O. G. Chivileva, “Morphological analysis of information conduction pathways in the basal ganglia of mammals,” Usp. Fiziol. Nauk., 34, No. 2, 45–63 (2003).

    Google Scholar 

  2. A. I. Gorbachevskaya and O. G. Chivileva, “Structural organization of the tegmental pedunculopontine nucleus of the midbrain in dogs,” Morfologiya, 126, No. 5, 11–15 (2004).

    Google Scholar 

  3. O. G. Chivileva and A. I. Gorbachevskaya, “Organization of the efferent projections of the tegmental pedunculopontine nucleus to the striatum in the dog brain,” Morfologiya, 126, No. 6, 11–15 (2004).

    CAS  Google Scholar 

  4. G. E. Alexander, M. E. DeLong, and P. L. Strick, “Parallel organization of functionally segregated circuits linking basal ganglia and cortex,” Ann. Rev. Neurosci., 9, 357–381 (1986).

    CAS  PubMed  Google Scholar 

  5. M. Crutcher, R. Turner, J. Perez, and D. Rye, “Relationship of the primate pedunculopontine nucleus (PPN) to tegmental connections with the internal pallidum (GPi),” Soc. Neurosci. Abstr., 20, 334 (1994).

    Google Scholar 

  6. S. Dua-Sharma, K. N. Sharma, and H. L. Jacobs, The Canine Brain in Stereotaxic Coordinates, MIT Press, Cambridge (Massachusetts), London (England) (1970).

    Google Scholar 

  7. E. Erro, J. L. Lanciego, and J. M. Gimenez-Ayala, “Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: a neuroanatomical tract-tracing study in the rat,” Exptl. Brain Res., 127, No. 2, 162–170 (1999).

    CAS  Google Scholar 

  8. S. N. Haber, E. Lynd-Balta, and W. P. J. M. Spooren, “Integrative aspects of basal ganglia circuitry,” in: The Basal Ganglia IV: New Ideas and Data on Structure and Function, Plenum Press, New York (1994), pp. 71–80.

    Google Scholar 

  9. D. Joel and I. Weiner, “The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry,” Brain Res. Rev., 23, No. 1, 62–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. G. L. Keating and D. B. Rye, “Functional organization of the brainstem-basal ganglia interactions as viewed from the pedunculopontine region,” in: Basal Ganglia and Thalamus in Health and Movement Disorders, Kluwer Academic/Plenum Press, New York, Boston, Dordrecht, London, Moscow (2001), pp. 175–188.

    Google Scholar 

  11. Y. Y. Lai, J. R. Clements, and J. M. Siegel, “Brainstem projections to the ventromedial medulla in cat: retrograde transport of horseradish peroxidase and immunohistochemical studies,” J. Comp. Neurol., 408, No. 3, 419–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. B. Lavoie and A. Parent, “Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods,” J. Comp. Neurol., 344, No. 2, 210–231 (1994).

    CAS  PubMed  Google Scholar 

  13. M. Matsumura, A. Nambu, Y. Yamaji, et al., “Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey,” Neurosci., 98, No. 1, 97–110 (2000).

    Article  CAS  Google Scholar 

  14. J. J. Mena-Segovia, J. P. Bolam, and P. J. Magill, “Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family?” Trends Neurosci., 27, No. 10, 585–588 (2004).

    CAS  PubMed  Google Scholar 

  15. M. M. Mesulam, “Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents,” J. Histochem. Cytochem., 26, No. 2, 106–117 (1978).

    CAS  PubMed  Google Scholar 

  16. A. Parent, Comparative Neurobiology of the Basal Ganglia, A Wiley-Interscience publication, New York (1986).

    Google Scholar 

  17. A. Parent, “Extrinsic connections of the basal ganglia,” Trends, Neurosci., 13, No. 7, 254–258 (1990).

    Article  CAS  Google Scholar 

  18. D. B. Rye, C. B. Saper, H. J. Lee, and B. H. Wainer, “Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum,” J. Comp. Neurol., 259, No. 4, 483–528 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Y. Smith and E. Shink, “The pedunculopontine nucleus (PPN): a potential target for the convergence of information arising from different functional territories of the internal pallidum,” Soc. Neurosci. Abstr., 21, 677 (1995).

    Google Scholar 

  20. B. M. Spann and I. Grofova, “Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat,” J. Comp. Neurol., 283, No. 1, 13–27 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. K. Takakusaki, T. Habaguchi, J. Ohtinata-Sugimoto, et al., “Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction,” Neurosci., 119, No. 1, 293–308 (2003).

    Article  CAS  Google Scholar 

  22. S. R. Vincent, K. Satoch, D. M. Armstrong, et al., “NADPH-diaphorase: a selective histochemical marker for the cholinergic neurons of the pontine reticular formation,” Neurosci. Lett., 43, No. 1, 31–36 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Morfologiya, Vol. 127, No. 2, pp. 19–23, March–April, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbachevskaya, A.I., Chivileva, O.G. Organization of the efferent projections of the pedunculopontine tegmental nucleus of the midbrain of the dog pallidum. Neurosci Behav Physiol 36, 423–428 (2006). https://doi.org/10.1007/s11055-006-0035-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-006-0035-7

Key words

Navigation